OXFORD

Atkins'

 PHYSICAL

 PHYSICAL

 CHEMISTRY

 CHEMISTRY}11th Edition

Peter Atkins | Julio de Paula | James Keeler

FUNDAMENTAL CONSTANTS

Constant	Symbol	Value		
			Power of 10	Units
Speed of light	c	$2.99792458 *$	10^{8}	$\mathrm{m} \mathrm{s}^{-1}$
Elementary charge	e	1.602176565	10^{-19}	C
Planck's constant	h	6.62606957	10^{-34}	Js
	$\hbar=h / 2 \pi$	1.054571726	10^{-34}	Js
Boltzmann's constant	k	1.3806488	10^{-23}	JK^{-1}
Avogadro's constant	$N_{\text {A }}$	6.02214129	10^{23}	mol^{-1}
Gas constant	$R=N_{\mathrm{A}} k$	8.3144621		$\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Faraday's constant	$F=N_{\mathrm{A}} e$	9.64853365	10^{4}	Cmol^{-1}
Mass				
Electron	$m_{\text {e }}$	9.10938291	10^{-31}	kg
Proton	m_{p}	1.672621777	10^{-27}	kg
Neutron	m_{n}	1.674927351	10^{-27}	kg
Atomic mass constant	m_{u}	1.660538921	10^{-27}	kg
Vacuum permeability	μ_{0}	$4 \pi^{*}$	10^{-7}	$\mathrm{Js}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
Vacuum permittivity	$\varepsilon_{0}=1 / \mu_{0} c^{2}$	8.854187817	10^{-12}	$\mathrm{J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{0}$	1.112650056	10^{-10}	$\mathrm{J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Bohr magneton	$\mu_{\mathrm{B}}=e \hbar / 2 m_{\text {e }}$	9.27400968	10^{-24}	JT^{-1}
Nuclear magneton	$\mu_{\mathrm{N}}=e \hbar / 2 m_{\mathrm{p}}$	5.05078353	10^{-27}	JT^{-1}
Proton magnetic moment	μ_{p}	1.410606743	10^{-26}	JT^{-1}
g-Value of electron	$g_{\text {e }}$	2.002319304		
Magnetogyric ratio				
Electron	$\gamma_{\mathrm{e}}=-g_{\mathrm{e}} e / 2 m_{\mathrm{e}}$	-1.001 159652	10^{10}	C kg^{-1}
Proton	$\gamma_{\mathrm{p}}=2 \mu_{\mathrm{p}} / \hbar$	2.675222004	10^{8}	Ckg ${ }^{-1}$
Bohr radius	$a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / e^{2} m_{\mathrm{e}}$	5.291772109	10^{-11}	m
Rydberg constant	$\tilde{R}_{\infty}=m_{e} e^{4} / 8 h^{3} c \varepsilon_{0}^{2}$	1.097373157	10^{5}	cm^{-1}
	$h c \tilde{R}_{\infty} / e$	13.60569253		eV
Fine-structure constant	$\alpha=\mu_{0} e^{2} c / 2 h$	7.2973525698	10^{-3}	
	α^{-1}	1.37035999074	10^{2}	
Stefan-Boltzmann constant	$\sigma=2 \pi^{5} k^{4} / 15 h^{3} c^{2}$	5.670373	10^{-8}	W m ${ }^{-2} \mathrm{~K}^{-4}$
Standard acceleration of free fall	g	9.80665^{*}		$\mathrm{m} \mathrm{s}^{-2}$
Gravitational constant	G	6.67384	10^{-11}	$\mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.

Atkins' PHYSICAL CHEMISTRY

Eleventh edition

Peter Atkins

Fellow of Lincoln College, University of Oxford, Oxford, UK

Julio de Paula

Professor of Chemistry,
Lewis \& Clark College, Portland, Oregon, USA

James Keeler

Senior Lecturer in Chemistry and Fellow of Selwyn College, University of Cambridge, Cambridge, UK

OXFORD

UNIVERSITY PRESS

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries
© Peter Atkins, Julio de Paula and James Keeler 2018
The moral rights of the author have been asserted
Eighth edition 2006
Ninth edition 2009
Tenth edition 2014
Impression: 1
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above
You must not circulate this work in any other form and you must impose this same condition on any acquirer
Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available
Library of Congress Control Number: 2017950918

> ISBN 978-0-19-108255-9

Printed in Italy by L.E.G.O. S.p.A.
Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

The cover image symbolizes the structure of the text, as a collection of Topics that merge into a unified whole. It also symbolizes the fact that physical chemistry provides a basis for understanding chemical and physical change.

PREFACE

Our Physical Chemistry is continuously evolving in response to users' comments and our own imagination. The principal change in this edition is the addition of a new co-author to the team, and we are very pleased to welcome James Keeler of the University of Cambridge. He is already an experienced author and we are very happy to have him on board.

As always, we strive to make the text helpful to students and usable by instructors. We developed the popular 'Topic' arrangement in the preceding edition, but have taken the concept further in this edition and have replaced chapters by Focuses. Although that is principally no more than a change of name, it does signal that groups of Topics treat related groups of concepts which might demand more than a single chapter in a conventional arrangement. We know that many instructors welcome the flexibility that the Topic concept provides, because it makes the material easy to rearrange or trim.

We also know that students welcome the Topic arrangement as it makes processing of the material they cover less daunting and more focused. With them in mind we have developed additional help with the manipulation of equations in the form of annotations, and The chemist's toolkits provide further background at the point of use. As these Toolkits are often relevant to more than one Topic, they also appear in consolidated and enhanced form on the website. Some of the material previously carried in the 'Mathematical backgrounds' has been used in this enhancement. The web also provides a number of sections called A deeper look. As their name suggests, these sections take the material in the text further than we consider appropriate for the printed version but are there for students and instructors who wish to extend their knowledge and see the details of more advanced calculations.

Another major change is the replacement of the 'Justifications' that show how an equation is derived. Our intention has been to maintain the separation of the equation and its derivation so that review is made simple, but at the same time to acknowledge that mathematics is an integral feature of learning. Thus, the text now sets up a question and the How is that done? section that immediately follows develops the relevant equation, which then flows into the following text.

The worked Examples are a crucially important part of the learning experience. We have enhanced their presentation by replacing the 'Method' by the more encouraging Collect your thoughts, where with this small change we acknowledge that different approaches are possible but that students welcome guidance. The Brief illustrations remain: they are intended simply to show how an equation is implemented and give a sense of the order of magnitude of a property.

It is inevitable that in an evolving subject, and with evolving interests and approaches to teaching, some subjects wither and die and are replaced by new growth. We listen carefully to trends of this kind, and adjust our treatment accordingly. The topical approach enables us to be more accommodating of fading fashions because a Topic can so easily be omitted by an instructor, but we have had to remove some subjects simply to keep the bulk of the text manageable and have used the web to maintain the comprehensive character of the text without overburdening the presentation.

This book is a living, evolving text. As such, it depends very much on input from users throughout the world, and we welcome your advice and comments.

USING THE BOOK

TO THE STUDENT

For this eleventh edition we have developed the range of learning aids to suit your needs more closely than ever before. In addition to the variety of features already present, we now derive key equations in a helpful new way, through the How is that done? sections, to emphasize how mathematics is an interesting, essential, and integral feature of understanding physical chemistry.

Innovative structure

Short Topics are grouped into Focus sections, making the subject more accessible. Each Topic opens with a comment on why it is important, a statement of its key idea, and a brief summary of the background that you need to know.

Notes on good practice

Our 'Notes on good practice' will help you avoid making common mistakes. Among other things, they encourage conformity to the international language of science by setting out the conventions and procedures adopted by the International Union of Pure and Applied Chemistry (IUPAC).

Resource section

The Resource section at the end of the book includes a table of useful integrals, extensive tables of physical and chemical data, and character tables. Short extracts of most of these tables appear in the Topics themselves: they are there to give you an idea of the typical values of the physical quantities mentioned in the text.

Checklist of concepts

A checklist of key concepts is provided at the end of each Topic, so that you can tick off the ones you have mastered.

TOPIC 2A Internal energy

```
> Why do you need to know this material?
The First Law of thermodynamics is the foundation of the discussion of the role of energy in chemistry. Wherever the
generation or use of energy in physical transformations or chemical reactions is of interest, lying in the background are the concepts introduced by the first Law.
> What is the key idea?
The total energy of an isolated system is constant.
\(>\) What do you need to know already?
This Topic makes use of the discussion of the properties of gases (Topic 1A), particularly the perfect gas law. It builds or or work given in the chemists toolkit 6 .
```

For the purposes of thermodynamics, the universe is divided into two parts, the system and its surroundings. The system is the part of the world of interest. It may be a reaction vessel, an engine, an electrochemical cell, a biological cell, and so on. The where measur comprise the region outside the system and are where measurements are made. The type of system depends on the characteristics of the boundary that divides it from the

For example, a closed system can expand and thereby raise a weight in the surroundings; a closed system may also transfer energy to the surroundings if they are at a lower temperarechanical nor thermal contact with its surroundings.

2A. 1 Work, heat, and energy
Although thermodynamics deals with observations on bulk systems, it is immeasurably enriched by understanding the molecular origins of these observations.
(a) Operational definitions

The fundamental physical property in thermodynamics is work: work is done to achieve motion against an opposing
force (The chemist's toolkit 6). A simple example is the process of raising a weight against the pull of gravity. A process does work if in principle it can be harnessed to raise a weight somewhere in the surroundings. An example of doing work is the expansion of a gas that pushes out a piston: the motion of the piston can in principle be used to raise a weight. Another ex ample is a chemical reaction in a cell, which leads to an electric

A note on good practice An allotrope is a particular molecular form of an element (such as O_{2} and O_{3}) and may be solid, liquid, or gas. A polymorph is one of a number of solid phases of an element or compound.

The number of phases in a system is denoted P. A gas, or a gaseous mixture, is a single phase ($P=1$), a crystal of a sub-

Contents

1 Common integrals 862
2 Units 864
3 Data 865

Checklist of concepts

1. The physical state of a sample of a substance, its physical condition, is defined by its physical properties.2. Mechanical equilibrium is the condition of equality of pressure on either side of a shared movable wall.

PRESENTING THE MATHEMATICS

How is that done?

You need to understand how an equation is derived from reasonable assumptions and the details of the mathematical steps involved. This is accomplished in the text through the new 'How is that done?' sections, which replace the Justifications of earlier editions. Each one leads from an issue that arises in the text, develops the necessary mathematics, and arrives at the equation or conclusion that resolves the issue. These sections maintain the separation of the equation and its derivation so that you can find them easily for review, but at the same time emphasize that mathematics is an essential feature of physical chemistry.

The chemist's toolkits

The chemist's toolkits, which are much more numerous in this edition, are reminders of the key mathematical, physical, and chemical concepts that you need to understand in order to follow the text. They appear where they are first needed. Many of these Toolkits are relevant to more than one Topic, and a compilation of them, with enhancements in the form of more information and brief illustrations, appears on the web site. www.oup.com/uk/pchem11e/

Annotated equations and equation labels

We have annotated many equations to help you follow how they are developed. An annotation can take you across the equals sign: it is a reminder of the substitution used, an approximation made, the terms that have been assumed constant, an integral used, and so on. An annotation can also be a reminder of the significance of an individual term in an expression. We sometimes colour a collection of numbers or symbols to show how they carry from one line to the next. Many of the equations are labelled to highlight their significance.

Checklists of equations

A handy checklist at the end of each topic summarizes the most important equations and the conditions under which they apply. Don't think, however, that you have to memorize every equation in these checklists.

How is that done? 4A. 1 Deducing the phase rule

The argument that leads to the phase rule is most easily appreciated by first thinking about the simpler case when only one component is present and then generalizing the result to an arbitrary number of components.
Step 1 Consider the case where only one component is present When only one phase is present $(P=1)$, both p and T can be varied independently, so $F=2$. Now consider the case where two phases α and β are in equilibrium ($P=2$). If the phases are in equilibrium at a given pressure and temperature, their chemical potentials must be equal:

The chemist's toolkit 2 Properties of bulk matter

The state of a bulk sample of matter is defined by specifying the values of various properties. Among them are:

The mass, m, a measure of the quantity of matter present (unit: kilogram, kg).
The volume, V, a measure of the quantity of space the sample occupies (unit: cubic metre, m^{3}).
The amount of substance, n, a measure of the number of specified entities (atoms, molecules, or formula units) present (unit: mole, mol).

$$
\begin{aligned}
& C_{V, \mathrm{~m}}^{\mathrm{U}}=\frac{\mathrm{U}(T)=U_{m}(0)+N_{\mathrm{A}}\left\langle\varepsilon^{V}\right\rangle}{\mathrm{V}} \frac{\mathrm{~d} N_{\mathrm{A}}\left\langle\varepsilon^{\mathrm{V}}\right\rangle}{\mathrm{d} T}=R \theta^{\mathrm{V}} \frac{\mathrm{~d}}{\mathrm{~d} T / f) / d x=-\left(1 / f^{2}\right) \mathrm{d} f / d x} \frac{1}{\mathrm{e}^{\theta^{\mathrm{V}} / T}-1} \stackrel{1}{=} R\left(\frac{\theta^{\mathrm{V}}}{T}\right)^{2} \frac{\mathrm{e}^{\theta^{\mathrm{V}} / T}}{\left(\mathrm{e}^{\theta^{\mathrm{V}} / T}-1\right)^{2}}
\end{aligned}
$$

By noting that $\mathrm{e}^{\theta^{V} / T}=\left(\mathrm{e}^{\theta^{V} / 2 T}\right)^{2}$, this expression can be rearranged into

$$
C_{V, \mathrm{~m}}^{\mathrm{V}}=\operatorname{Rf}(T) \quad f(T)=\left(\frac{\theta^{\mathrm{V}}}{T}\right)^{2}\left(\frac{\mathrm{e}^{-\theta^{\mathrm{V}} / 2 T}}{1-\mathrm{e}^{-\theta^{\mathrm{V} / T}}}\right)^{2}
$$

Vibrational contribution to $C_{V, m} \quad$ (13E.3)

Checklist of equations

Property	Equation
Gibbs energy of mixing	$\Delta_{\text {mix }} G=n R T\left(x_{\mathrm{A}} \ln x_{\mathrm{A}}+x_{\mathrm{B}} \ln x_{\mathrm{B}}\right)$
Entropy of mixing	$\Delta_{\text {mix }} S=-n R\left(x_{\mathrm{A}} \ln x_{\mathrm{A}}+x_{\mathrm{B}} \ln x_{\mathrm{B}}\right)$

SETTING UP AND SOLVING PROBLEMS

Brief illustrations

A Brief illustration shows you how to use an equation or concept that has just been introduced in the text. It shows you how to use data and manipulate units correctly. It also helps you to become familiar with the magnitudes of quantities.

Examples

Worked Examples are more detailed illustrations of the application of the material, and typically require you to assemble and deploy the relevant concepts and equations.

We suggest how you should collect your thoughts (that is a new feature) and then proceed to a solution. All the worked Examples are accompanied by Self-tests to enable you to test your grasp of the material after working through our solution as set out in the Example.

Discussion questions

Discussion questions appear at the end of every Focus, and are organised by Topic. These questions are designed to encourage you to reflect on the material you have just read, to review the key concepts, and sometimes to think about its implications and limitations.

Exercises and problems

Exercises and Problems are also provided at the end of every Focus and organised by Topic. Exercises are designed as relatively straightforward numerical tests; the Problems are more challenging and typically involve constructing a more detailed answer. The Exercises come in related pairs, with final numerical answers available online for the 'a' questions. Final numerical answers to the odd-numbered Problems are also available online.

Integrated activities

At the end of every Focus you will find questions that span several Topics. They are designed to help you use your knowledge creatively in a variety of ways.

Brief illustration 3B. 1

When the volume of any perfect gas is doubled at constant temperature, $V_{\mathrm{f}} / V_{\mathrm{i}}=2$, and hence the change in molar entropy of the system is

$$
\Delta S_{\mathrm{m}}=\left(8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times \ln 2=+5.76 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Example 1A. 1 Using the perfect gas law

In an industrial process, nitrogen gas is introduced into a vessel of constant volume at a pressure of 100 atm and a temperature of 300 K . The gas is then heated to 500 K . What pressure would the gas then exert, assuming that it behaved as a perfect gas?

Collect your thoughts The pressure is expected to be greater on account of the increase in temperature. The perfect gas

FOCUS 3 The Second and Third Laws

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

TOPIC 3A Entropy

Discussion questions
D3A. The evolution of life requires the organization of a very large number
of molecules into biological cells. Does the formation of living organisms violate the Second Law of thermodyynmics? State your conclusion clearly and present detailed arguments to support it.

Exercises

[^0]gas of mass 14 g a 298 K doubles its volume in (a) an isothermal reversible expansion, (b) an isothermal irreversible expansion agginst $p_{a}=0$, and (c) an
adiabatic reveribs adabaicic reversible expansion.
B3A.4b) Calculate the change in the entropies of the system and the

 against $p_{a}=0$, and (c) an adiabatic reversible expansion.
 hot source at 273 K and 3.00 k of work is generated. What is the temperatur
of cold sink?
 temperature is the hot source?
EBA. $6(\mathrm{a})$ What is the efficel
EBA.C(a) What is the e eficieiency yo an ideal heat engine in which the hot source
is at $100^{\circ} \mathrm{C}$ and the cold sink is at $10^{\circ} \mathrm{C}$?
BaO ? mast the cold sink be bif the eflisa hot source at $40^{\circ} \mathrm{C}$.

[^1]
THERE IS A LOT OF ADDITIONAL MATERIAL ON THE WEB

```
IMPACT 1 ...ON ENVIRONMENTAL SCIENCE:
The gas laws and the weather
```

The biggest sample of gas readily accessible to us is the
atmosphere，a mixture of gases with the composition
summarized in Table 1 ．The composition is manintained
moderately constant by diffusion and convection（winds，
particularly the local turbulence called eddiess but the
pressure and temperature vary with altitude and with
the local conditions，particularly in the troposphere（the
sphere of change＇），the layer extending up to about 11 km ．

＇Impact＇sections

＇Impact＇sections show how physical chemistry is applied in a variety of modern contexts．They showcase physical chemistry as an evolving subject．www．oup．com／uk／pchem11e／

A deeper look

These online sections take some of the material in the text further and are there if you want to extend your knowledge and see the details of some of the more advanced derivations www．oup．com／uk／pchem11e／

TO THE INSTRUCTOR

We have designed the text to give you maximum flexibility in the selection and sequence of Topics，while the grouping of Topics into Focuses helps to maintain the unity of the subject． Additional resources are：

Figures and tables from the book

Lecturers can find the artwork and tables from the book in ready－to－download format．These may be used for lectures

```
A DEEPER LOOK 2 The fugacity
At various stages in the development of physical chemistry it is necessary to switch from a consideration of ideal－ ized systems to real systems．In many cases it is desirable to preserve the form of the expressions that have been derived for an idealized system．Then deviations from the idealized behaviour can be expressed most simply．For nstance，the pressure－dependence of the molar Gibbs energy of a perfect gas is
\(G_{\mathrm{m}}=G_{\mathrm{m}}^{\ominus}+R T \ln \left(\frac{p}{p^{\circ}}\right) \quad\)（1a）
```

（4b）

```
#
```


利利 f}\mp@subsup{f}{2}{}\mathrm{ is the fugacity when the pressure is }\mp@subsup{p}{2}{}\mathrm{ . That is,
利利 f}\mp@subsup{f}{2}{}\mathrm{ is the fugacity when the pressure is }\mp@subsup{p}{2}{}\mathrm{ . That is,
fom eqn bb,
fom eqn bb,
\mp@subsup{\int}{\mp@subsup{p}{1}{}}{\mp@subsup{p}{2}{2}}\mp@subsup{V}{\textrm{m}}{}\textrm{d}p=RTl\operatorname{ln}\frac{\mp@subsup{f}{2}{}}{\mp@subsup{f}{1}{}}
\mp@subsup{\int}{\mp@subsup{p}{1}{}}{\mp@subsup{p}{2}{2}}\mp@subsup{V}{\textrm{m}}{}\textrm{d}p=RTl\operatorname{ln}\frac{\mp@subsup{f}{2}{}}{\mp@subsup{f}{1}{}}
For a perfect gas,
For a perfect gas,
\int}\mp@subsup{\int}{\mp@subsup{p}{1}{}}{\mp@subsup{p}{1}{}}\mp@subsup{V}{\mathrm{ perfot,mm}}{}\textrm{m}p=RT\operatorname{ln}\frac{\mp@subsup{p}{2}{}}{\mp@subsup{p}{1}{}

```
    \int}\mp@subsup{\int}{\mp@subsup{p}{1}{}}{\mp@subsup{p}{1}{}}\mp@subsup{V}{\mathrm{ perfot,mm}}{}\textrm{m}p=RT\operatorname{ln}\frac{\mp@subsup{p}{2}{}}{\mp@subsup{p}{1}{}
```


Group theory tables

Comprehensive group theory tables are available to download．

Molecular modelling problems

Files containing molecular modelling problems can be down－ loaded，designed for use with the Spartan Student ${ }^{\text {m＂}}$ software． However they can also be completed using any modelling software that allows Hartree－Fock，density functional，and MP2 calculations．The site can be accessed at www．oup．com／ uk／pchem11e／．
without charge（but not for commercial purposes without specific permission）．

Key equations

Supplied in Word format so you can download and edit them．
Lecturer resources are available only to registered adopters of the textbook．To register，simply visit www．oup．com／uk／pchem11e／ and follow the appropriate links．

SOLUTIONS MANUALS

Two solutions manuals have been written by Peter Bolgar， Haydn Lloyd，Aimee North，Vladimiras Oleinikovas，Stephanie Smith，and James Keeler．

The Student＇s Solutions Manual（ISBN 9780198807773） provides full solutions to the＇a＇Exercises and to the odd－ numbered Problems．

The Instructor＇s Solutions Manual provides full solutions to the＇b＇Exercises and to the even－numbered Problems （available to download online for registered adopters of the book only）．

ABOUT THE AUTHORS

Photograph by Natasha Ellis-Knight.

Photograph by Nathan Pitt, ©University of Cambridge.

Peter Atkins is a fellow of Lincoln College, Oxford, and was Professor of Physical Chemistry in the University of Oxford. He is the author of over seventy books for students and a general audience. His texts are market leaders around the globe. A frequent lecturer in the United States and throughout the world, he has held visiting professorships in France, Israel, Japan, China, Russia, and New Zealand. He was the founding chairman of the Committee on Chemistry Education of the International Union of Pure and Applied Chemistry and was a member of IUPAC's Physical and Biophysical Chemistry Division.

Julio de Paula is Professor of Chemistry at Lewis \& Clark College. A native of Brazil, he received a B.A. degree in chemistry from Rutgers, The State University of New Jersey, and a Ph.D. in biophysical chemistry from Yale University. His research activities encompass the areas of molecular spectroscopy, photochemistry, and nanoscience. He has taught courses in general chemistry, physical chemistry, biophysical chemistry, inorganic chemistry, instrumental analysis, environmental chemistry, and writing. Among his professional honours are a Christian and Mary Lindback Award for Distinguished Teaching, a Henry Dreyfus Teacher-Scholar Award, and a Cottrell Scholar Award from the Research Corporation for Science Advancement.

James Keeler is a Senior Lecturer in Chemistry at the University of Cambridge, and Walters Fellow in Chemistry at Selwyn College, Cambridge. He took his first degree at the University of Oxford and continued there for doctoral research in nuclear magnetic resonance spectroscopy. Dr Keeler is Director of Teaching for undergraduate chemistry, and teaches courses covering a range of topics in physical and theoretical chemistry.

ACKNOWLEDGEMENTS

A book as extensive as this could not have been written without significant input from many individuals. We would like to reiterate our thanks to the hundreds of people who contributed to the first ten editions. Many people gave their advice based on the tenth edition, and others, including students, reviewed the draft chapters for the eleventh edition as they emerged. We wish to express our gratitude to the following colleagues:

Andrew J. Alexander, University of Edinburgh Stephen H. Ashworth, University of East Anglia Mark Berg, University of South Carolina Eric Bittner, University of Houston Melanie Britton, University of Birmingham Eleanor Campbell, University of Edinburgh Andrew P. Doherty, Queen's University of Belfast Rob Evans, Aston University
J.G.E. Gardeniers, University of Twente Ricardo Grau-Crespo, University of Reading Alex Grushow, Rider University Leonid Gurevich, Aalborg University Ronald Haines, University of New South Wales Patrick M. Hare, Northern Kentucky University John Henry, University of Wolverhampton Karl Jackson, Virginia Union University Carey Johnson, University of Kansas George Kaminski, Worcester Polytechnic Institute Scott Kirkby, East Tennessee State University Kathleen Knierim, University of Louisiana at Lafayette Jeffry Madura, University of Pittsburgh
David H. Magers, Mississippi College
Kristy Mardis, Chicago State University

Paul Marshall, University of North Texas
Laura R. McCunn, Marshall University Allan McKinley, University of Western Australia Joshua Melko, University of North Florida Yirong Mo, Western Michigan University Gareth Morris, University of Manchester Han J. Park, University of Tennessee at Chattanooga
Rajeev Prabhakar, University of Miami
Gavin Reid, University of Leeds
Chad Risko, University of Kentucky
Nessima Salhi, Uppsala University
Daniel Savin, University of Florida
Richard W. Schwenz, University of Northern Colorado
Douglas Strout, Alabama State University
Steven Tait, Indiana University
Jim Terner, Virginia Commonwealth University
Timothy Vaden, Rowan University
Alfredo Vargas, University of Sussex
Darren Walsh, University of Nottingham
Collin Wick, Louisiana Tech University
Shoujun Xu, University of Houston
Renwu Zhang, California State University
Wuzong Zhou, St Andrews University

We would also like to thank Michael Clugston for proofreading the entire book, and Peter Bolgar, Haydn Lloyd, Aimee North, Vladimiras Oleinikovas, Stephanie Smith, and James Keeler for writing a brand new set of solutions. Last, but by no means least, we acknowledge our two commissioning editors, Jonathan Crowe of Oxford University Press and Jason Noe of OUP USA, and their teams for their assistance, advice, encouragement, and patience.

BRIEF CONTENTS

PROLOGUE
FOCUS 1 The properties of gases
FOCUS 2 The First Law33
FOCUS 3 The Second and Third Laws77
FOCUS 4 Physical transformations of pure substances 119
FOCUS 5 Simple mixtures 141
FOCUS 6 Chemical equilibrium 203
FOCUS 7 Quantum theory 235
FOCUS 8 Atomic structure and spectra 303
FOCUS 9 Molecular structure 341
FOCUS 10 Molecular symmetry 387
FOCUS 11 Molecular spectroscopy 417
FOCUS 12 Magnetic resonance 487
FOCUS 13 Statistical thermodynamics 531
FOCUS 14 Molecular interactions 583
FOCUS 15 Solids 639
FOCUS 16 Molecules in motion 689
FOCUS 17 Chemical kinetics 721
FOCUS 18 Reaction dynamics 779
FOCUS 19 Processes at solid surfaces 823
Resource section
1 Common integrals 862
2 Units 864
3 Data 865
4 Character tables 895
Index 899

FULL CONTENTS

Conventions XXV
List of tables xxvi
List of The chemist's toolkits xxviii
List of material provided as A deeper look xxix
List of Impacts xxx
PROLOGUE Energy, temperature, and chemistry 1
FOCUS 1 The properties of gases 3
TOPIC 1A The perfect gas 4
1A. 1 Variables of state 4
(a) Pressure 4
(b) Temperature 5
1A. 2 Equations of state 6
(a) The empirical basis 7
(b) Mixtures of gases 9
Checklist of concepts 10
Checklist of equations 10
TOPIC 1B The kinetic model 11
1B. 1 The model 11
(a) Pressure and molecular speeds 12
(b) The Maxwell-Boltzmann distribution of speeds 13
(c) Mean values 15
1B. 2 Collisions 17
(a) The collision frequency 17
(b) The mean free path 18
Checklist of concepts 18
Checklist of equations 18
TOPIC 1C Real gases 19
1C. 1 Deviations from perfect behaviour 19
(a) The compression factor 20
(b) Virial coefficients 20
(c) Critical constants 22
1C. 2 The van der Waals equation 23
(a) Formulation of the equation 23
(b) The features of the equation 24
(c) The principle of corresponding states 26
Checklist of concepts 27
Checklist of equations 27
FOCUS 2 The First Law 33
TOPIC 2A Internal energy 34
2A. 1 Work, heat, and energy 34
(a) Operational definitions 34
(b) The molecular interpretation of heat and work 36
2A. 2 The definition of internal energy 37
(a) Molecular interpretation of internal energy 37
(b) The formulation of the First Law 38
2A. 3 Expansion work 38
(a) The general expression for work 39
(b) Expansion against constant pressure 39
(c) Reversible expansion 40
d) Isothermal reversible expansion of a perfect gas 41
2A. 4 Heat transactions 42
(a) Calorimetry 42
(b) Heat capacity 43
Checklist of concepts 45
Checklist of equations 45
TOPIC 2B Enthalpy 46
2B. 1 The definition of enthalpy 46
(a) Enthalpy change and heat transfer 46
(b) Calorimetry 47
2B. 2 The variation of enthalpy with temperature 48
(a) Heat capacity at constant pressure 48
(b) The relation between heat capacities 49
Checklist of concepts 50
Checklist of equations 50
TOPIC 2C Thermochemistry 51
2C. 1 Standard enthalpy changes 51
(a) Enthalpies of physical change 51
(b) Enthalpies of chemical change 52
(c) Hess's law 53
2C. 2 Standard enthalpies of formation 54
2C.3 The temperature dependence of reaction enthalpies 55
2C. 4 Experimental techniques 56
(a) Differential scanning calorimetry 56
(b) Isothermal titration calorimetry 57
Checklist of concepts 57
Checklist of equations 58
TOPIC 2D State functions and exact differentials 59
2D. 1 Exact and inexact differentials 59
2D. 2 Changes in internal energy 60
(a) General considerations 60
(b) Changes in internal energy at constant pressure 62
2D. 3 Changes in enthalpy 63
2D. 4 The Joule-Thomson effect 64
(a) The observation of the Joule-Thomson effect 64
(b) The molecular interpretation of the Joule-Thomson effect 65
Checklist of concepts 66
Checklist of equations 66
TOPIC 2E Adiabatic changes 67
2E. 1 The change in temperature 67
2E. 2 The change in pressure 68
Checklist of concepts 69Checklist of equations69
FOCUS 3 The Second and Third Laws 77
TOPIC 3A Entropy 78
3A. 1 The Second Law 78
3A. 2 The definition of entropy 80
(a) The thermodynamic definition of entropy 80
(b) The statistical definition of entropy 81
3A. 3 The entropy as a state function 82
(a) The Carnot cycle 82
(b) The thermodynamic temperature 85
(c) The Clausius inequality 85
Checklist of concepts 86
Checklist of equations87
TOPIC 3B Entropy changes accompanying specific processes 88
3B. 1 Expansion 88
3B. 2 Phase transitions 89
3B. 3 Heating 90
3B. 4 Composite processes 90
Checklist of concepts 91
Checklist of equations
TOPIC 3C The measurement of entropy 92
3C. 1 The calorimetric measurement of entropy 92
3C. 2 The Third Law
(a) The Nernst heat theorem93
(b) Third-Law entropies(c) The temperature dependence of reaction entropyChecklist of equations939495
Checklist of concepts 9696
TOPIC 3D Concentrating on the system 97
3D. 1 The Helmholtz and Gibbs energies 97(a) Criteria of spontaneity(b) Some remarks on the Helmholtz energy(c) Maximum work97
(d) Some remarks on the Gibbs energy
(d) Some remarks on the Gibbs energy 99(e) Maximum non-expansion work
3D. 2 Standard molar Gibbs energies00
(a) Gibbs energies of formation 101
(b) The Born equation 102
Checklist of concepts 103
Checklist of equations 103
TOPIC 3E Combining the First and Second Laws 104
3E. 1 Properties of the internal energy 104
(a) The Maxwell relations 104
(b) The variation of internal energy with volume 106
3E. 2 Properties of the Gibbs energy 106
(a) General considerations 106
(b) The variation of the Gibbs energy with temperature 108
(c) The variation of the Gibbs energy with pressure 108
Checklist of concepts 110
Checklist of equations 110
FOCUS 4 Physical transformations of pure substances 119
TOPIC 4A Phase diagrams of pure substances 120
4A. 1 The stabilities of phases 120
(a) The number of phases 120
(b) Phase transitions 120
(c) Thermodynamic criteria of phase stability 121
4A. 2 Phase boundaries 122
(a) Characteristic properties related to phase transitions 122
(b) The phase rule 123
4A.3 Three representative phase diagrams 125
(a) Carbon dioxide 125
(b) Water 125
(c) Helium 126
Checklist of concepts 127
Checklist of equations 127
TOPIC 4B Thermodynamic aspects of phase transitions 128
4B. 1 The dependence of stability on the conditions 128
(a) The temperature dependence of phase stability 128
(b) The response of melting to applied pressure 129
(c) The vapour pressure of a liquid subjected to pressure 130
4B. 2 The location of phase boundaries 131
(a) The slopes of the phase boundaries 131
(b) The solid-liquid boundary 132
(c) The liquid-vapour boundary 132
(d) The solid-vapour boundary 134
Checklist of concepts 134
Checklist of equations 134
FOCUS 5 Simple mixtures 141
TOPIC 5A The thermodynamic description of mixtures 143
5A.1 Partial molar quantities 143
(a) Partial molar volume 143
(b) Partial molar Gibbs energies 145
(c) The wider significance of the chemical potential 146
(d) The Gibbs-Duhem equation 146
5A. 2 The thermodynamics of mixing 147
(a) The Gibbs energy of mixing of perfect gases 147
(b) Other thermodynamic mixing functions 149
5A.3 The chemical potentials of liquids 150
(a) Ideal solutions 150
(b) Ideal-dilute solutions 152
Checklist of concepts 153
Checklist of equations 154
TOPIC 5B The properties of solutions 155
5B. 1 Liquid mixtures 155
(a) Ideal solutions 155
(b) Excess functions and regular solutions 156
5B. 2 Colligative properties 158
(a) The common features of colligative properties 158
(b) The elevation of boiling point 159
(c) The depression of freezing point 161
(d) Solubility 161
(e) Osmosis162
Checklist of concepts 164
Checklist of equations 165
TOPIC 5C Phase diagrams of binary systems: liquids 166
5C. 1 Vapour pressure diagrams 166
5C. 2 Temperature-composition diagrams 168
(a) The construction of the diagrams 168
(b) The interpretation of the diagrams 169
5C. 3 Distillation 170
(a) Simple and fractional distillation 170
(b) Azeotropes 171
(c) Immiscible liquids 172
5C. 4 Liquid-liquid phase diagrams 172
(a) Phase separation 172(b) Critical solution temperatures(c) The distillation of partially miscible liquids175
Checklist of concepts 176
Checklist of equations 176
TOPIC 5D Phase diagrams of binary systems: solids 177
5D. 1 Eutectics 177
5D. 2 Reacting systems 178
5D. 3 Incongruent melting 179
Checklist of concepts 179
TOPIC 5E Phase diagrams of ternary systems 180
5E. 1 Triangular phase diagrams 180
5E. 2 Ternary systems 181
(a) Partially miscible liquids 181
(b) Ternary solids 182
Checklist of concepts 182
TOPIC 5F Activities 183
5F. 1 The solvent activity 183
5F. 2 The solute activity 183
(a) Ideal-dilute solutions 184
(b) Real solutes 184
(c) Activities in terms of molalities 185
5F. 3 The activities of regular solutions 185
5F. 4 The activities of ions 187
(a) Mean activity coefficients 187
(b) The Debye-Hückel limiting law 187
(c) Extensions of the limiting law 188
Checklist of concepts 189
Checklist of equations 190
FOCUS 6 Chemical equilibrium 203
TOPIC 6A The equilibrium constant 204
6A. 1 The Gibbs energy minimum 204
(a) The reaction Gibbs energy 204
(b) Exergonic and endergonic reactions 205
6A. 2 The description of equilibrium 205
a) Perfect gas equilibria 205
(b) The general case of a reaction 206
(c) The relation between equilibrium constants 209
(d) Molecular interpretation of the equilibrium constant 210
Checklist of concepts 211
Checklist of equations 211
TOPIC 6B The response of equilibria to the conditions 212
6B. 1 The response to pressure 212
6B. 2 The response to temperature 213
(a) The van't Hoff equation 213
(b) The value of K at different temperatures 215
Checklist of concepts 216
Checklist of equations 216
TOPIC 6C Electrochemical cells 217
6C. 1 Half-reactions and electrodes 217
6C. 2 Varieties of cells 218
(a) Liquid junction potentials 218
(b) Notation 219
6C. 3 The cell potential 219
(a) The Nernst equation 219
(b) Cells at equilibrium 221
6C.4 The determination of thermodynamic functions 221
Checklist of concepts 223
Checklist of equations 223
TOPIC 6D Electrode potentials 224
6D. 1 Standard potentials 224
(a) The measurement procedure 225
(b) Combining measured values 226
6D.2 Applications of standard potentials 226
(a) The electrochemical series 226
(b) The determination of activity coefficients 226
(c) The determination of equilibrium constants 227
Checklist of concepts 227
Checklist of equations 228
FOCUS 7 Quantum theory 235
TOPIC 7A The origins of quantum mechanics 237
7A. 1 Energy quantization 237
(a) Black-body radiation 237
(b) Heat capacity 240
(c) Atomic and molecular spectra 241
7A. 2 Wave-particle duality 242
(a) The particle character of electromagnetic radiation 242
(b) The wave character of particles 244
Checklist of concepts 245
Checklist of equations 245
TOPIC 7B Wavefunctions 246
7B. 1 The Schrödinger equation 246
7B. 2 The Born interpretation 247
(a) Normalization 248
(b) Constraints on the wavefunction 249
(c) Quantization 250
Checklist of concepts 250
Checklist of equations 250
TOPIC 7C Operators and observables 251
7C. 1 Operators 251
(a) Eigenvalue equations 251
(b) The construction of operators 252
(c) Hermitian operators 253
(d) Orthogonality 254
7C. 2 Superpositions and expectation values 255
7C. 3 The uncertainty principle 257
7C. 4 The postulates of quantum mechanics 259
Checklist of concepts 260
Checklist of equations 260
TOPIC 7D Translational motion 261
7D. 1 Free motion in one dimension 261
7D. 2 Confined motion in one dimension 262
(a) The acceptable solutions 263
(b) The properties of the wavefunctions 264
(c) The properties of the energy 265
7D. 3 Confined motion in two and more dimensions 266
(a) Energy levels and wavefunctions 266
(b) Degeneracy
7D. 4 Tunnelling
Checklist of concepts267268
Checklist of equations271
TOPIC 7E Vibrational motion 273
7E. 1 The harmonic oscillator 273
(a) The energy levels 274
(b) The wavefunctions 275
7E. 2 Properties of the harmonic oscillator(a) Mean values(b) TunnellingChecklist of concepts277277278
Checklist of equations 280
TOPIC 7F Rotational motion7F. 1 Rotation in two dimensions281(a) The solutions of the Schrödinger equation281(b) Quantization of angular momentum283
7F. 2 Rotation in three dimensions 285284
(a) The wavefunctions and energy levels 285
(b) Angular momentum 288
(c) The vector model 288
Checklist of concepts 290
Checklist of equations 290 290
FOCUS 8 Atomic structure and spectra 303
TOPIC 8A Hydrogenic atoms 304
8A. 1 The structure of hydrogenic atoms 304
(a) The separation of variables 304
(b) The radial solutions 305
8A. 2 Atomic orbitals and their energies 308
(a) The specification of orbitals 308
(b) The energy levels 308
(c) Ionization energies 309
(d) Shells and subshells 309
(e) s Orbitals 310
(f) Radial distribution functions 311
(g) p Orbitals 313
(h) d Orbitals 314
Checklist of concepts 314
Checklist of equations 315
TOPIC 8B Many-electron atoms 316
8B. 1 The orbital approximation 316
8B.2 The Pauli exclusion principle 317
(a) Spin 317
(b) The Pauli principle 318
8B. 3 The building-up principle 319
(a) Penetration and shielding 319
(b) Hund's rules 321
(c) Atomic and ionic radii 323
(d) Ionization energies and electron affinities 324
8B. 4 Self-consistent field orbitals 325
Checklist of concepts 325
Checklist of equations 326
TOPIC 8C Atomic spectra 327
8C. 1 The spectra of hydrogenic atoms 327
8C. 2 The spectra of many-electron atoms 328
(a) Singlet and triplet terms 328
(b) Spin-orbit coupling 329
(c) Term symbols 332
(d) Hund's rules 335
(e) Selection rules 335
Checklist of concepts 336
Checklist of equations 336
FOCUS 9 Molecular structure 341
PROLOGUE The Born-Oppenheimer approximation 343
TOPIC 9A Valence-bond theory 344
9A. 1 Diatomic molecules 344
9A. 2 Resonance 346
9A. 3 Polyatomic molecules 346
(a) Promotion 347
(b) Hybridization 347
Checklist of concepts 350
Checklist of equations 350
TOPIC 9B Molecular orbital theory: the hydrogen molecule-ion 351
9B. 1 Linear combinations of atomic orbitals 351
(a) The construction of linear combinations 351
(b) Bonding orbitals 353
(c) Antibonding orbitals 354
9B. 2 Orbital notation 356
Checklist of concepts 356
Checklist of equations 356
TOPIC 9C Molecular orbital theory: homonuclear diatomic molecules 357
9C. 1 Electron configurations 357
(a) σ Orbitals and π orbitals 357
(b) The overlap integral 359(c) Period 2 diatomic molecules9C. 2 Photoelectron spectroscopy360Checklist of concepts362
Checklist of equations 364
TOPIC 9D Molecular orbital theory: heteronuclear diatomic molecules 365
9D. 1 Polar bonds and electronegativity 365
9D. 2 The variation principle 366
(a) The procedure 367
(b) The features of the solutions 369
Checklist of concepts 370
Checklist of equations 370
TOPIC 9E Molecular orbital theory: polyatomic molecules 371
9E. 1 The Hückel approximation 371
(a) An introduction to the method 371
(b) The matrix formulation of the method 372
9E. 2 Applications 375
(a) π-Electron binding energy 375
(b) Aromatic stability 376
9E. 3 Computational chemistry 377
(a) Semi-empirical and ab initio methods 378
(b) Density functional theory 379
(c) Graphical representations 379
Checklist of concepts 380
Checklist of equations 380
FOCUS 10 Molecular symmetry 387
TOPIC 10A Shape and symmetry 388
10A. 1 Symmetry operations and symmetry elements 388
10A. 2 The symmetry classification of molecules 390
(a) The groups C_{1}, C_{i}, and C 392
(b) The groups $C_{n^{\prime}} C_{n v^{\prime}}$ and $C_{n h}$ 392
(c) The groups $D_{n^{\prime}} D_{n h^{\prime}}$ and $D_{n d}$ 393
(d) The groups S_{n}
(e) The cubic groups 393
(f) The full rotation group 394
10A. 3 Some immediate consequences of symmetry 394
(a) Polarity 394
(b) Chirality 395
Checklist of concepts 395
Checklist of operations and elements 396
TOPIC 10B Group theory 397
10B. 1 The elements of group theory 397
10B. 2 Matrix representations 398
(a) Representatives of operations 398
(b) The representation of a group 399
(c) Irreducible representations 400
(d) Characters 401
10B. 3 Character tables 401
(a) The symmetry species of atomic orbitals 402
(b) The symmetry species of linear combinations of orbitals 403
(c) Character tables and degeneracy 404
Checklist of concepts 405
Checklist of equations 405
TOPIC 10C Applications of symmetry 406
10C. 1 Vanishing integrals 406
(a) Integrals of the product of functions 407
(b) Decomposition of a representation 408
10C. 2 Applications to molecular orbital theory 409
(a) Orbital overlap 409
(b) Symmetry-adapted linear combinations 409
10C. 3 Selection rules 411
Checklist of concepts 411
Checklist of equations 411
FOCUS 11 Molecular spectroscopy 417
TOPIC 11A General features of molecular spectroscopy 419
11A. 1 The absorption and emission of radiation 420
(a) Stimulated and spontaneous radiative processes 420
(b) Selection rules and transition moments 421
(c) The Beer-Lambert law 421
11A. 2 Spectral linewidths 423
(a) Doppler broadening 423
(b) Lifetime broadening 425
11A. 3 Experimental techniques 425
(a) Sources of radiation 426
(b) Spectral analysis 426
(c) Detectors 428
(d) Examples of spectrometers 428
Checklist of concepts 429
Checklist of equations 429
TOPIC 11B Rotational spectroscopy 430
11B. 1 Rotational energy levels 430
(a) Spherical rotors 432
(b) Symmetric rotors 432
(c) Linear rotors
(d) Centrifugal distortion
11B. 2 Microwave spectroscopy
(a) Selection rules
(b) The appearance of microwave spectra
11B. 3 Rotational Raman spectroscopy
11B. 4 Nuclear statistics and rotational states
Checklist of concepts434
434435435436437439Checklist of equations441TOPIC 11C Vibrational spectroscopy of diatomicmolecules442
11C. 1 Vibrational motion 442
11C. 2 Infrared spectroscopy 443
11C. 3 Anharmonicity 444
(a) The convergence of energy levels(b) The Birge-Sponer plot444
11C. 4 Vibration-rotation spectra
(a) Spetral brance 446445
(a) Spectral branches
(b) Combination differences447
11C. 5 Vibrational Raman spectra 448448
Checklist of concepts 449
Checklist of equations
TOPIC 11D Vibrational spectroscopy of polyatomic molecules 451
11D. 1 Normal modes 451
11D. 2 Infrared absorption spectra 452
11D. 3 Vibrational Raman spectra 453
Checklist of concepts 454
Checklist of equations 454
TOPIC 11E Symmetry analysis of vibrational spectra 455
11E. 1 Classification of normal modes according to symmetry 455
11E. 2 Symmetry of vibrational wavefunctions 457
(a) Infrared activity of normal modes 457
(b) Raman activity of normal modes 458
(c) The symmetry basis of the exclusion rule 458
Checklist of concepts 458
TOPIC 11F Electronic spectra 459
11F. 1 Diatomic molecules 459
(a) Term symbols 459
(b) Selection rules 461(c) Vibrational fine structure
462
(d) Rotational fine structure 465
11F. 2 Polyatomic molecules 466
(a) d-Metal complexes 467
(b) $\pi^{*} \leftarrow \pi$ and $\pi^{*} \leftarrow \mathrm{n}$ transitions 468
Checklist of concepts 469
Checklist of equations 469
TOPIC 11G Decay of excited states 470
11G. 1 Fluorescence and phosphorescence 470
11G. 2 Dissociation and predissociation 472
11G. 3 Lasers 473
Checklist of concepts 474
FOCUS 12 Magnetic resonance 487
TOPIC 12A General principles 488
12A. 1 Nuclear magnetic resonance 488
(a) The energies of nuclei in magnetic fields 488
(b) The NMR spectrometer 490
12A. 2 Electron paramagnetic resonance 491
(a) The energies of electrons in magnetic fields 491
(b) The EPR spectrometer 492
Checklist of concepts 493
Checklist of equations 493
TOPIC 12B Features of NMR spectra 494
12B. 1 The chemical shift 494
12B. 2 The origin of shielding constants 496
(a) The local contribution 496
(b) Neighbouring group contributions 497
(c) The solvent contribution 498
12B. 3 The fine structure 499
(a) The appearance of the spectrum 499
(b) The magnitudes of coupling constants 501
(c) The origin of spin-spin coupling 502
(d) Equivalent nuclei 503
(e) Strongly coupled nuclei 504
12B.4 Exchange processes 505
12B. 5 Solid-state NMR 506
Checklist of concepts 507
Checklist of equations 508
TOPIC 12C Pulse techniques in NMR 509
12C. 1 The magnetization vector 509
(a) The effect of the radiofrequency field 510
(b) Time- and frequency-domain signals 511
12C. 2 Spin relaxation 513
(a) The mechanism of relaxation 513
(b) The measurement of T_{1} and T_{2} 514
12C. 3 Spin decoupling 515
12C.4 The nuclear Overhauser effect 516
Checklist of concepts 518
Checklist of equations 518
TOPIC 12D Electron paramagnetic resonance 519
12D. 1 The g-value 519
12D. 2 Hyperfine structure 520
(a) The effects of nuclear spin 520
(b) The McConnell equation 521
(c) The origin of the hyperfine interaction 522
Checklist of concepts 523
Checklist of equations 523
FOCUS 13 Statistical thermodynamics 531
TOPIC 13A The Boltzmann distribution 532
13A. 1 Configurations and weights 532
(a) Instantaneous configurations 532
(b) The most probable distribution 533
(c) The values of the constants 535
13A. 2 The relative population of states 536Checklist of concepts
Checklist of equations
TOPIC 13B Molecular partition functions 538
13B. 1 The significance of the partition function 538
13B.2 Contributions to the partition function 540
a) The translational contribution 540
(b) The rotational contribution 542
c) The vibrational contribution 546
(d) The electronic contribution 547
Checklist of concepts 548
Checklist of equations 548
TOPIC 13C Molecular energies 549
13C. 1 The basic equations 549
13C. 2 Contributions of the fundamental modes of motion 550
(a) The translational contribution 550
(b) The rotational contribution 550
(c) The vibrational contribution 551
d) The electronic contribution 552
e) The spin contribution 552
Checklist of concepts 553
Checklist of equations 553
TOPIC 13D The canonical ensemble 554
13D. 1 The concept of ensemble 554
(a) Dominating configurations 555
b) Fluctuations from the most probable distribution 555
13D. 2 The mean energy of a system 556
13D. 3 Independent molecules revisited 556
13D. 4 The variation of the energy with volume 557
Checklist of concepts 558
Checklist of equations 558
TOPIC 13E The internal energy and the entropy 559
13E. 1 The internal energy 559
(a) The calculation of internal energy 559
(b) Heat capacity 560
13E. 2 The entropy 561
(a) Entropy and the partition function 561
b) The translational contribution 563
c) The rotational contribution 563
(d) The vibrational contribution 564
(e) Residual entropies 565
Checklist of concepts 566
Checklist of equations 566
TOPIC 13F Derived functions 567
13F. 1 The derivations 567
13F. 2 Equilibrium constants 570
(a) The relation between K and the partition function 570
(b) A dissociation equilibrium 570
(c) Contributions to the equilibrium constant 571
Checklist of concepts 573
Checklist of equations 573
FOCUS 14 Molecular interactions 583
TOPIC 14A The electric properties of molecules 585
14A. 1 Electric dipole moments 585
14A. 2 Polarizabilities 587
14A. 3 Polarization 588
(a) The frequency dependence of the polarization 588
(b) Molar polarization 590
Checklist of concepts 592
Checklist of equations 592
TOPIC 14B Interactions between molecules 593
14B. 1 The interactions of dipoles 593
a) Charge-dipole interactions 593
(b) Dipole-dipole interactions 594
(c) Dipole-induced dipole interactions 597
(d) Induced dipole-induced dipole interactions 597
14B.2 Hydrogen bonding 598
14B. 3 The total interaction 599
Checklist of concepts 601
Checklist of equations 601
TOPIC 14C Liquids 602
14C. 1 Molecular interactions in liquids 602
a) The radial distribution function 602
b) The calculation of $g(r)$ 603
(c) The thermodynamic properties of liquids 604
14C. 2 The liquid-vapour interface 605
a) Surface tension 605
(b) Curved surfaces 606
c) Capillary action 606
14C. 3 Surface films 608
a) Surface pressure 608
(b) The thermodynamics of surface layers 609
14C. 4 Condensation 611
Checklist of concepts 612
Checklist of equations 612
TOPIC 14D Macromolecules 613
14D. 1 Average molar masses 613
14D. 2 The different levels of structure 614
14D. 3 Random coils 615
(a) Measures of size 615(b) Constrained chains(c) Partly rigid coils
14D. 4 Mechanical properties(a) Conformational entropy(b) Elastomers
14D. 5 Thermal propertiesChecklist of concepts
Checklist of equations ,
TOPIC 14E Self-assembly 623
14E. 1 Colloids 623
(a) Classification and preparation 623
(b) Structure and stability 624(c) The electrical double layer14E. 2 Micelles and biological membranes
(a) The hydrophobic interaction
(b) Micelle formation
(c) Bilayers, vesicles, and membranes
Checklist of concepts624
626626627Checklist of equation
630630
FOCUS 15 Solids 639
TOPIC 15A Crystal structure 641
15A. 1 Periodic crystal lattices 641
15A. 2 The identification of lattice planes 643
(a) The Miller indices 643
(b) The separation of neighbouring planes 644
Checklist of concepts 645
Checklist of equations 645
TOPIC 15B Diffraction techniques 646
15B.1 X-ray crystallography 646
(a) X-ray diffraction 646(c) Scattering factors(d) The electron density
(e) The determination of structure
15B. 2 Neutron and electron diffraction
(b) Bragg's law 648649649652Checklist of concepts654
Checklist of equations 655
TOPIC 15C Bonding in solids 656
15C. 1 Metals 656
(a) Close packing 656
(b) Electronic structure of metals 658
15C. 2 Ionic solids 660
(a) Structure 660(b) Energetics
15C. 3 Covalent and molecular solids 663
Checklist of concepts 664
Checklist of equations 665
TOPIC 15D The mechanical properties of solids 666
Checklist of concepts 667
Checklist of equations 668
TOPIC 15E The electrical properties of solids 669
15E. 1 Metallic conductors 669
15E. 2 Insulators and semiconductors 670
15E. 3 Superconductors 672
Checklist of concepts 673
Checklist of equations 673
TOPIC 15F The magnetic properties of solids 674
15F. 1 Magnetic susceptibility 674
15F. 2 Permanent and induced magnetic moments 675
15F.3 Magnetic properties of superconductors 676
Checklist of concepts 676
Checklist of equations 677
TOPIC 15G The optical properties of solids 678
15G. 1 Excitons 678
15G.2 Metals and semiconductors 679
(a) Light absorption 679
(b) Light-emitting diodes and diode lasers 680
15G. 3 Nonlinear optical phenomena 680
Checklist of concepts 681
FOCUS 16 Molecules in motion 689
TOPIC 16A Transport properties of a perfect gas 690
16A. 1 The phenomenological equations 690
16A. 2 The transport parameters 692
(a) The diffusion coefficient 693
(b) Thermal conductivity 694
(c) Viscosity 696
(d) Effusion 697
Checklist of concepts 697
Checklist of equations 698
TOPIC 16B Motion in liquids 699
16B.1 Experimental results 699
(a) Liquid viscosity 699
(b) Electrolyte solutions 700
16B. 2 The mobilities of ions 701
(a) The drift speed 701
(b) Mobility and conductivity 703
(c) The Einstein relations 704
Checklist of concepts 705
Checklist of equations 705
FOCUS 16C Diffusion 706
16C. 1 The thermodynamic view 706
16C. 2 The diffusion equation 708
(a) Simple diffusion 708
(b) Diffusion with convection(c) Solutions of the diffusion equation710
16C. 3 The statistical view 712
Checklist of conceptsChecklist of equations
FOCUS 17 Chemical kinetics 721
TOPIC 17A The rates of chemical reactions 723
17A. 1 Monitoring the progress of a reaction 723
(a) General considerations 723
(b) Special techniques
17A. 2 The rates of reactions
(a) The definition of rate
(b) Rate laws and rate constants
(c) Reaction order
(d) The determination of the rate law
Checklist of concepts
Checklist of equations724725725726727728729730
TOPIC 17B Integrated rate laws 731
17B.1 Zeroth-order reactions 731
17B. 2 First-order reactions 731
17B. 3 Second-order reactions 733Checklist of concepts
Checklist of equations736736
TOPIC 17C Reactions approaching equilibrium 737
17C. 1 First-order reactions approaching equilibrium 737
17C. 2 Relaxation methods 738
Checklist of concepts 740
Checklist of equations 740
TOPIC 17D The Arrhenius equation 741
17D. 1 The temperature dependence of reaction rates 741
17D. 2 The interpretation of the Arrhenius parameters 742
(a) A first look at the energy requirements of reactions 743
(b) The effect of a catalyst on the activation energy 744
Checklist of concepts745
Checklist of equations 745
TOPIC 17E Reaction mechanisms 746
17E. 1 Elementary reactions 746
17E. 2 Consecutive elementary reactions 747
17E. 3 The steady-state approximation 748
17E. 4 The rate-determining step 749
17E. 5 Pre-equilibria 750
17E. 6 Kinetic and thermodynamic control of reactions 752
Checklist of concepts 752
Checklist of equations 752
TOPIC 17F Examples of reaction mechanisms 753
17F. 1 Unimolecular reactions 753
17F. 2 Polymerization kinetics 754
(a) Stepwise polymerization 755
(b) Chain polymerization 756
17F. 3 Enzyme-catalysed reactions 758
Checklist of concepts 761
Checklist of equations 761
TOPIC 17G Photochemistry 762
17G. 1 Photochemical processes 762
17G. 2 The primary quantum yield 763
17G. 3 Mechanism of decay of excited singlet states 764
17G. 4 Quenching 765
17G. 5 Resonance energy transfer 767
Checklist of concepts 768
Checklist of equations 768
FOCUS 18 Reaction dynamics 779
TOPIC 18A Collision theory 780
18A. 1 Reactive encounters 780
(a) Collision rates in gases 781
(b) The energy requirement 781
c) The steric requirement 784
18A. 2 The RRK model 785
Checklist of concepts 786
Checklist of equations 786
TOPIC 18B Diffusion-controlled reactions 787
18B.1 Reactions in solution 787
a) Classes of reaction 787
(b) Diffusion and reaction 788
18B. 2 The material-balance equation 789
(a) The formulation of the equation 789
(b) Solutions of the equation 790
Checklist of concepts 790
Checklist of equations 791
TOPIC 18C Transition-state theory 792
18C. 1 The Eyring equation 792
(a) The formulation of the equation 792
(b) The rate of decay of the activated complex 793
(c) The concentration of the activated complex 793
(d) The rate constant 794
18C. 2 Thermodynamic aspects 795
(a) Activation parameters 795
(b) Reactions between ions 797
18C. 3 The kinetic isotope effect 798
Checklist of concepts 800
Checklist of equations 800
TOPIC 18D The dynamics of molecular collisions 801
18D. 1 Molecular beams 801
(a) Techniques 801
(b) Experimental results 802
18D. 2 Reactive collisions 804
(a) Probes of reactive collisions 804
(b) State-to-state reaction dynamics 804
18D. 3 Potential energy surfaces 805
18D. 4 Some results from experiments and calculations 806
(a) The direction of attack and separation 807
(b) Attractive and repulsive surfaces 808
(c) Quantum mechanical scattering theory 808
Checklist of concepts 809
Checklist of equations 809
TOPIC 18E Electron transfer in homogeneous systems 810
18E. 1 The rate law 810
18E. 2 The role of electron tunnelling 811
18E. 3 The rate constant 812
18E. 4 Experimental tests of the theory 813
Checklist of concepts 815
Checklist of equations 815
FOCUS 19 Processes at solid surfaces 823
TOPIC 19A An introduction to solid surfaces 824
19A. 1 Surface growth 824
19A. 2 Physisorption and chemisorption 825
19A. 3 Experimental techniques 826
(a) Microscopy 827
(b) Ionization techniques 828
(c) Diffraction techniques 829
(d) Determination of the extent and rates of adsorption and desorption 830
Checklist of concepts 831
Checklist of equations 831
TOPIC 19B Adsorption and desorption 832
19B. 1 Adsorption isotherms 832
(a) The Langmuir isotherm 832
(b) The isosteric enthalpy of adsorption 834
(c) The BET isotherm
(d) The Temkin and Freundlich isotherms 837
19B. 2 The rates of adsorption and desorption 837
(a) The precursor state 837
(b) Adsorption and desorption at the molecular level 838
(c) Mobility on surfaces 839
Checklist of concepts 840
Checklist of equations 840
TOPIC 19C Heterogeneous catalysis 841
19C. 1 Mechanisms of heterogeneous catalysis 841
(a) Unimolecular reactions 841
(b) The Langmuir-Hinshelwood mechanism 842
(c) The Eley-Rideal mechanism 843
19C. 2 Catalytic activity at surfaces 843
Checklist of concepts 844
Checklist of equations 844
TOPIC 19D Processes at electrodes 845
19D. 1 The electrode-solution interface 845
19D. 2 The current density at an electrode 846
(a) The Butler-Volmer equation 846
(b) Tafel plots 850
19D. 3 Voltammetry 850
19D. 4 Electrolysis 852
19D. 5 Working galvanic cells 853
Checklist of concepts 854
Checklist of equations 854
Resource section 861
1 Common integrals 862
2 Units 864
3 Data 865
4 Character tables 895
Index 899

CONVENTIONS

To avoid intermediate rounding errors, but to keep track of values in order to be aware of values and to spot numerical errors, we display intermediate results as n.nnn... and round the calculation only at the final step.

Blue terms are used when we want to identify a term in an equation. An entire quotient, numerator/denominator, is coloured blue if the annotation refers to the entire term, not just to the numerator or denominator separately.

LIST OF TABLES

Table 1A. 1 Pressure units
Table 1B. 1 The (molar) gas constant
Table 1B. 2 Collision cross-sections
Table 1C. 1 Second virial coefficients, $B /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$
Table 1C. 2 Critical constants of gases
Table 1C. 3 van der Waals coefficients
Table 1C. 4 Selected equations of state 25
Table 2A. $1 \quad$ Varieties of work 39
Table 2B. 1 Temperature variation of molar heat capacities, $C_{p, \mathrm{~m}} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)=a+b T+c / T^{2}$ 49
Table 2C. 1 Standard enthalpies of fusion and vaporization at the transition temperature 52
Table 2C. 2 Enthalpies of reaction and transition 52
Table 2C. 3 Standard enthalpies of formation and combustion of organic compounds at 298 K 53
Table 2C. 4 Standard enthalpies of formation of inorganic compounds at 298 K 54
Table 2C. 5 Standard enthalpies of formation of organic compounds at 298 K 54
Table 2D. 1 Expansion coefficients (α) and isothermal compressibilities $\left(\kappa_{T}\right)$ at 298 K
Table 2D. 2 Inversion temperatures (T_{I}), normal freezing $\left(T_{\mathrm{f}}\right)$ and boiling (T_{b}) points, and Joule-Thomson coefficients (μ) at 1 atm and 298 K 63
Table 3B. 1 Standard entropies of phase transitions, $\Delta_{\mathrm{trs}} S^{\ominus} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$, at the corresponding normal transition temperatures 89
Table 3B. 2 The standard enthalpies and entropies of vaporization of liquids at their boiling temperatures 89
Table 3C. 1 Standard Third-Law entropies at 298 K 94
Table 3D. 1 Standard Gibbs energies of formation at 298 K 101
Table 3E. 1 The Maxwell relations 105
Table 5A. 1 Henry's law constants for gases in water at 298 K 153
Table 5B. 1 Freezing-point (K_{f}) and boiling-point (K_{b}) constants 160Table 8B. 4 First and second ionization energies325
Table 8B. 5 Electron affinities, $E_{\mathrm{a}} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ 325
Table 9A. 1 Some hybridization schemes 349
Table 9C. 1 Overlap integrals between hydrogenic orbitals 359
Table 9C. 2 Bond lengths 362
Table 9C. 3 Bond dissociation energies 362
Table 9D. 1 Pauling electronegativities 366
Table 10A. 1 The notations for point groups 390
Table 10B. 1 The $C_{2 v}$ character table 402
Table 10B. 2 The $C_{3 v}$ character table 402
Table 10B. 3 The C_{4} character table 405
Table 11B. 1 Moments of inertia 431
Table 11C. 1 Properties of diatomic molecules 447
Table 11F. 1 Colour, frequency, and energy of light 459
Table 11F. 2 Absorption characteristics of some groups and molecules 467
Table 11G. 1 Characteristics of laser radiation and their chemical applications 473
Table 12A. 1 Nuclear constitution and the nuclear spin quantum number 488
Table 12A. 2 Nuclear spin properties 489
Table 12D. 1 Hyperfine coupling constants for atoms, a / mT 522
Table 13B. 1 Rotational temperatures of diatomic molecules 544
Table 13B. 2 Symmetry numbers of molecules 545
Table 13B.3 Vibrational temperatures of diatomic molecules 547
Table 14A. 1 Dipole moments and polarizability volumes 585
Table 14B. 1 Interaction potential energies 597
Table 14B. 2 Lennard-Jones-(12,6) potential energy parameters 600
Table 14C. 1 Surface tensions of liquids at 293 K 605
Table 14E. 1 Micelle shape and the surfactant parameter 628
Table 15A. 1 The seven crystal systems 642
Table 15C. 1 The crystal structures of some elements 657
Table 15C. 2 Ionic radii, r / pm 661
Table 15C. 3 Madelung constants 662
Table 15C. 4 Lattice enthalpies at $298 \mathrm{~K}, \Delta H_{\mathrm{L}} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ 663
Table 15F. 1 Magnetic susceptibilities at 298 K 675
Table 16A. 1 Transport properties of gases at 1 atm 691
Table 16B. 1 Viscosities of liquids at 298 K 699
Table 16B.2 Ionic mobilities in water at 298 K 702
Table 16B.3 Diffusion coefficients at $298 \mathrm{~K}, D /\left(10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$ 704
Table 17B. 1 Kinetic data for first-order reactions 732
Table 17B. 2 Kinetic data for second-order reactions 733
Table 17B. 3 Integrated rate laws 735
Table 17D. 1 Arrhenius parameters 741
Table 17G. 1 Examples of photochemical processes 762
Table 17G. 2 Common photophysical processes 763
Table 17G. 3 Values of R_{0} for some donor-acceptor pairs 767
Table 18A. 1 Arrhenius parameters for gas-phase reactions 784
Table 18B.1 Arrhenius parameters for solvolysis reactions in solution 788
Table 19A. 1 Maximum observed standard enthalpies of physisorption at 298 K 825
Table 19A. 2 Standard enthalpies of chemisorption, $\Delta_{\text {ad }} H^{\ominus} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$, at 298 K 825
Table 19C. 1 Chemisorption abilities 844
Table 19D. 1 Exchange-current densities and transfer coefficients at 298 K 849
Table A. 1 Some common units 864
Table A. 2 Common SI prefixes 864
Table A. 3 The SI base units 864
Table A. 4 A selection of derived units 864
Table 0.1 Physical properties of selected materials 866
Table 0.2 Masses and natural abundances of selected nuclides 867

LIST OF THE CHEMIST'S TOOLKITS

Number Topic Title
1 1A Quantities and units 5
2
1A Properties of bulk matter 6
3
3 1B Momentum and force 11
4 1B Integration 14
563E Exact differentials105
11 5A Measures of concentration 148
12 5B Series expansions 160
13 7A Electromagnetic radiation 237
14 7B Complex numbers 247
15 7C Integration by parts 254
16 7C Euler's formula 256
17
7D Vectors 262
18 7E The classical harmonic oscillator 273
19 7F Cylindrical coordinates 281
20 7F Angular momentum 282
21 7F Spherical polar coordinates 286
22 8C The manipulation of vectors 330
23 9D Determinants 368
24
9E Matrices 373
25 9E Matrix methods for solving eigenvalue equations 375
26 11A Exponential and Gaussian functions 424
27 12B Dipolar magnetic fields 497
28 12C The Fourier transform 512
29 16B Electrostatics 702
30 17B Integration by the method of partial fractions 735

LIST OF MATERIAL PROVIDED AS A DEEPER LOOK

Number	Title
1	The Debye-Hückel theory
2	The fugacity
3	Separation of variables
4	The energy of the bonding molecular orbital of H_{2}^{+}
5	Rotational selection rules
6	Vibrational selection rules
7	The van der Waals equation of state
8	The electric dipole-dipole interaction
9	The virial and the virial equation of state
10	Establishing the relation between bulk and molecular properties
11	The random walk
12	The RRK model
13	The BET isotherm

LIST OF IMPACTS

Number	Focus	Title
1	1	... on environmental science: The gas laws and the weather
2	1	... on astrophysics: The Sun as a ball of perfect gas
3	2on technology: Thermochemical aspects of fuels and foods
4	3	. . .on engineering: Refrigeration
5	3	. . . on materials science: Crystal defects
6	4	. . . on technology: Supercritical fluids
7	5	. . .on biology: Osmosis in physiology and biochemistry
8	5	. . . on materials science: Liquid crystals
9	6	... on biochemistry: Energy conversion in biological cells
10	6	... on chemical analysis: Species-selective electrodes
11	7	. . . on technology: Quantum computing
12	7	. . . on nanoscience: Quantum dots
13	8	. . .on astrophysics: The spectroscopy of stars
14	9	... on biochemistry: The reactivity of $\mathrm{O}_{2}, \mathrm{~N}_{2}$, and NO
15	9	. . . on biochemistry: Computational studies of biomolecules
16	11	. . .on astrophysics: Rotational and vibrational spectroscopy of interstellar species
17	11	. . . on environmental science: Climate change
18	12	. . . on medicine: Magnetic resonance imaging
19	12	. . . on biochemistry and nanoscience: Spin probes
20	13	. . .on biochemistry: The helix-coil transition in polypeptides
21	14	. . .on biology: Biological macromolecules
22	14	. . . on medicine: Molecular recognition and drug design
23	15	... on biochemistry: Analysis of DNA by X-ray diffraction
24	15	. . .on nanoscience: Nanowires
25	16	. . . on biochemistry: lon channels
26	17	. . . on biochemistry: Harvesting of light during plant photosynthesis
27	19	. . . on technology: Catalysis in the chemical industry
28	19	. . . on technology: Fuel cells

PROLOGUE Energy, temperature, and chemistry

Energy is a concept used throughout chemistry to discuss molecular structures, reactions, and many other processes. What follows is an informal first look at the important features of energy. Its precise definition and role will emerge throughout the course of this text.

The transformation of energy from one form to another is described by the laws of thermodynamics. They are applicable to bulk matter, which consists of very large numbers of atoms and molecules. The 'First Law' of thermodynamics is a statement about the quantity of energy involved in a transformation; the 'Second Law' is a statement about the dispersal of that energy (in a sense that will be explained).

To discuss the energy of individual atoms and molecules that make up samples of bulk matter it is necessary to use quantum mechanics. According to this theory, the energy associated with the motion of a particle is 'quantized', meaning that the energy is restricted to certain values, rather than being able to take on any value. Three different kinds of motion can occur: translation (motion through space), rotation (change of orientation), and vibration (the periodic stretching and bending of bonds). Figure 1 depicts the relative sizes and spacing of the energy states associated with these different kinds of motion of typical molecules and compares them with the typical energies of electrons in atoms and molecules. The allowed energies associated with translation are so close together in normal-sized containers that they form a continuum. In contrast, the separation between the allowed electronic energy states of atoms and molecules is very large.

The link between the energies of individual molecules and the energy of bulk matter is provided by one of the most important concepts in chemistry, the Boltzmann distribution. Bulk matter

Figure 1 The relative energies of the allowed states of various kinds of atomic and molecular motion.
consists of large numbers of molecules, each of which is in one of its available energy states. The total number of molecules with a particular energy due to translation, rotation, vibration, and its electronic state is called the 'population' of that state. Most molecules are found in the lowest energy state, and higher energy states are occupied by progressively fewer molecules. The Boltzmann distribution gives the population, N_{i}, of any energy state in terms of the energy of the state, ε_{i}, and the absolute temperature, T :

$$
N_{i} \propto \mathrm{e}^{-\varepsilon_{i} / k T}
$$

In this expression, k is Boltzmann's constant (its value is listed inside the front cover), a universal constant (in the sense of having the same value for all forms of matter). Figure 2 shows the Boltzmann distribution for two temperatures: as the temperature increases higher energy states are populated at the expense of states lower in energy. According to the Boltzmann distribution, the temperature is the single parameter that governs the spread of populations over the available energy states, whatever their nature.

Figure 2 The relative populations of states at (a) low, (b) high temperature according to the Boltzmann distribution.

The Boltzmann distribution, as well as providing insight into the significance of temperature, is central to understanding much of chemistry. That most molecules occupy states of low energy when the temperature is low accounts for the existence of compounds and the persistence of liquids and solids. That highly excited energy levels become accessible at high temperatures accounts for the possibility of reaction as one substance acquires the ability to change into another. Both features are explored in detail throughout the text.

You should keep in mind the Boltzmann distribution (which is treated in greater depth later in the text) whenever considering the interpretation of the properties of bulk matter and the role of temperature. An understanding of the flow of energy and how it is distributed according to the Boltzmann distribution is the key to understanding thermodynamics, structure, and change throughout chemistry.

FOCUS 1

The properties of gases

A gas is a form of matter that fills whatever container it occupies. This Focus establishes the properties of gases that are used throughout the text.

1A The perfect gas

This Topic is an account of an idealized version of a gas, a 'perfect gas', and shows how its equation of state may be assembled from the experimental observations summarized by Boyle's law, Charles's law, and Avogadro's principle.
1A. 1 Variables of state; 1A. 2 Equations of state

1B The kinetic model

A central feature of physical chemistry is its role in building models of molecular behaviour that seek to explain observed phenomena. A prime example of this procedure is the development of a molecular model of a perfect gas in terms of a collection of molecules (or atoms) in ceaseless, essentially random motion. As well as accounting for the gas laws, this model can be used to predict the average speed at which molecules move in a gas, and its dependence on temperature. In combination with the Boltzmann distribution (see the text's Prologue), the model can also be used to predict the spread of molecular speeds and its dependence on molecular mass and temperature.

1C Real gases

The perfect gas is a starting point for the discussion of properties of all gases, and its properties are invoked throughout thermodynamics. However, actual gases, 'real gases', have properties that differ from those of perfect gases, and it is necessary to be able to interpret these deviations and build the effects of molecular attractions and repulsions into the model. The discussion of real gases is another example of how initially primitive models in physical chemistry are elaborated to take into account more detailed observations.
1C. 1 Deviations from perfect behaviour; 1C. 2 The van der Waals equation

Web resources What is an application of this material?

The perfect gas law and the kinetic theory can be applied to the study of phenomena confined to a reaction vessel or encompassing an entire planet or star. In Impact 1 the gas laws are used in the discussion of meteorological phenomena-the weather. Impact 2 examines how the kinetic model of gases has a surprising application: to the discussion of dense stellar media, such as the interior of the Sun.

TOPIC 1A The perfect gas

Why do you need to know this material?

Equations related to perfect gases provide the basis for the development of many relations in thermodynamics. The perfect gas law is also a good first approximation for accounting for the properties of real gases.

What is the key idea?

The perfect gas law, which is based on a series of empirical observations, is a limiting law that is obeyed increasingly well as the pressure of a gas tends to zero.

What do you need to know already?

You need to know how to handle quantities and units in calculations, as reviewed in The chemist's toolkit 1. You also need to be aware of the concepts of pressure, volume, amount of substance, and temperature, all reviewed in The chemist's toolkit 2.

The properties of gases were among the first to be established quantitatively (largely during the seventeenth and eighteenth centuries) when the technological requirements of travel in balloons stimulated their investigation. These properties set the stage for the development of the kinetic model of gases, as discussed in Topic 1B.

1A. 1 Variables of state

The physical state of a sample of a substance, its physical condition, is defined by its physical properties. Two samples of the same substance that have the same physical properties are in the same state. The variables needed to specify the state of a system are the amount of substance it contains, n, the volume it occupies, V, the pressure, p, and the temperature, T.

(a) Pressure

The origin of the force exerted by a gas is the incessant battering of the molecules on the walls of its container. The collisions are so numerous that they exert an effectively steady force, which is experienced as a steady pressure. The SI unit

Table 1A. 1 Pressure units*

Name	Symbol	Value
pascal	Pa	$1 \mathrm{~Pa}=1 \mathrm{~N} \mathrm{~m}^{-2}, 1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$
bar	bar	$1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
atmosphere	atm	$1 \mathrm{~atm}=101.325 \mathrm{kPa}$
torr	Torr	$1 \mathrm{Torr}=(101325 / 760) \mathrm{Pa}=133.32 \ldots \mathrm{~Pa}$
millimetres of mercury	mmHg	$1 \mathrm{mmHg}=133.322 \ldots \mathrm{~Pa}$
pounds per square inch	psi	$1 \mathrm{psi}=6.894757 \ldots \mathrm{kPa}$

*Values in bold are exact.
of pressure, the pascal $\left(\mathrm{Pa}, 1 \mathrm{~Pa}=1 \mathrm{Nm}^{-2}\right)$, is introduced in The chemist's toolkit 1 . Several other units are still widely used (Table 1A.1). A pressure of 1 bar is the standard pressure for reporting data; it is denoted p^{\ominus}.

If two gases are in separate containers that share a common movable wall (Fig. 1A.1), the gas that has the higher pressure will tend to compress (reduce the volume of) the gas that has lower pressure. The pressure of the high-pressure gas will fall as it expands and that of the low-pressure gas will rise as it is compressed. There will come a stage when the two pressures are equal and the wall has no further tendency to move. This condition of equality of pressure on either side of a movable wall is a state of mechanical equilibrium between the two gases. The pressure of a gas is therefore an indication of whether a container that contains the gas will be in mechanical equilibrium with another gas with which it shares a movable wall.

Figure 1A. 1 When a region of high pressure is separated from a region of low pressure by a movable wall, the wall will be pushed into one region or the other, as in (a) and (c). However, if the two pressures are identical, the wall will not move (b). The latter condition is one of mechanical equilibrium between the two regions.

The chemist's toolkit 1

The result of a measurement is a physical quantity that is reported as a numerical multiple of a unit:

$$
\text { physical quantity }=\text { numerical value } \times \text { unit }
$$

It follows that units may be treated like algebraic quantities and may be multiplied, divided, and cancelled. Thus, the expression (physical quantity)/unit is the numerical value (a dimensionless quantity) of the measurement in the specified units. For instance, the mass m of an object could be reported as $m=2.5 \mathrm{~kg}$ or $m / \mathrm{kg}=2.5$. In this instance the unit of mass is 1 kg , but it is common to refer to the unit simply as kg (and likewise for other units). See Table A. 1 in the Resource section for a list of units.
Although it is good practice to use only SI units, there will be occasions where accepted practice is so deeply rooted that physical quantities are expressed using other, non-SI units. By international convention, all physical quantities are represented by oblique (sloping) letters (for instance, m for mass); units are given in roman (upright) letters (for instance m for metre).
Units may be modified by a prefix that denotes a factor of a power of 10 . Among the most common SI prefixes are those
listed in Table A. 2 in the Resource section. Examples of the use of these prefixes are:

$$
1 \mathrm{~nm}=10^{-9} \mathrm{~m} \quad 1 \mathrm{ps}=10^{-12} \mathrm{~s} \quad 1 \mu \mathrm{~mol}=10^{-6} \mathrm{~mol}
$$

Powers of units apply to the prefix as well as the unit they modify. For example, $1 \mathrm{~cm}^{3}=1(\mathrm{~cm})^{3}$, and $\left(10^{-2} \mathrm{~m}\right)^{3}=10^{-6} \mathrm{~m}^{3}$. Note that $1 \mathrm{~cm}^{3}$ does not mean $1 \mathrm{c}\left(\mathrm{m}^{3}\right)$. When carrying out numerical calculations, it is usually safest to write out the numerical value of an observable in scientific notation (as $n . n n n \times 10^{n}$).
There are seven SI base units, which are listed in Table A. 3 in the Resource section. All other physical quantities may be expressed as combinations of these base units. Molar concentration (more formally, but very rarely, amount of substance concentration) for example, which is an amount of substance divided by the volume it occupies, can be expressed using the derived units of $\mathrm{mol} \mathrm{dm}^{-3}$ as a combination of the base units for amount of substance and length. A number of these derived combinations of units have special names and symbols. For example, force is reported in the derived unit newton, $1 \mathrm{~N}=$ $1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$ (see Table A. 4 in the Resource section).

The pressure exerted by the atmosphere is measured with a barometer. The original version of a barometer (which was invented by Torricelli, a student of Galileo) was an inverted tube of mercury sealed at the upper end. When the column of mercury is in mechanical equilibrium with the atmosphere, the pressure at its base is equal to that exerted by the atmosphere. It follows that the height of the mercury column is proportional to the external pressure.

The pressure of a sample of gas inside a container is measured by using a pressure gauge, which is a device with properties that respond to the pressure. For instance, a Bayard-Alpert pressure gauge is based on the ionization of the molecules present in the gas and the resulting current of ions is interpreted in terms of the pressure. In a capacitance manometer, the deflection of a diaphragm relative to a fixed electrode is monitored through its effect on the capacitance of the arrangement. Certain semiconductors also respond to pressure and are used as transducers in solid-state pressure gauges.

(b) Temperature

The concept of temperature is introduced in The chemist's toolkit 2. In the early days of thermometry (and still in laboratory practice today), temperatures were related to the length of a column of liquid, and the difference in lengths shown when the thermometer was first in contact with melting ice and then with boiling water was divided into 100 steps called 'degrees', the lower point being labelled 0 . This procedure led
to the Celsius scale of temperature. In this text, temperatures on the Celsius scale are denoted θ (theta) and expressed in $d e$ grees Celsius $\left({ }^{\circ} \mathrm{C}\right)$. However, because different liquids expand to different extents, and do not always expand uniformly over a given range, thermometers constructed from different materials showed different numerical values of the temperature between their fixed points. The pressure of a gas, however, can be used to construct a perfect-gas temperature scale that is independent of the identity of the gas. The perfect-gas scale turns out to be identical to the thermodynamic temperature scale (Topic 3A), so the latter term is used from now on to avoid a proliferation of names.

On the thermodynamic temperature scale, temperatures are denoted T and are normally reported in kelvins (K ; not ${ }^{\circ} \mathrm{K}$). Thermodynamic and Celsius temperatures are related by the exact expression

$$
\begin{equation*}
T / \mathrm{K}=\theta /{ }^{\circ} \mathrm{C}+273.15 \tag{1A.1}
\end{equation*}
$$ [definition]

This relation is the current definition of the Celsius scale in terms of the more fundamental Kelvin scale. It implies that a difference in temperature of $1^{\circ} \mathrm{C}$ is equivalent to a difference of 1 K .

Brief illustration 1A. 1

To express $25.00^{\circ} \mathrm{C}$ as a temperature in kelvins, eqn 1 A .1 is used to write

$$
T / \mathrm{K}=\left(25.00^{\circ} \mathrm{C}\right) /{ }^{\circ} \mathrm{C}+273.15=25.00+273.15=298.15
$$

The chemist's toolkit 2

The state of a bulk sample of matter is defined by specifying the values of various properties. Among them are:

The mass, m, a measure of the quantity of matter present (unit: kilogram, kg).
The volume, V, a measure of the quantity of space the sample occupies (unit: cubic metre, m^{3}).
The amount of substance, n, a measure of the number of specified entities (atoms, molecules, or formula units) present (unit: mole, mol).
The amount of substance, n (colloquially, 'the number of moles'), is a measure of the number of specified entities present in the sample. 'Amount of substance' is the official name of the quantity; it is commonly simplified to 'chemical amount' or simply 'amount'. A mole is currently defined as the number of carbon atoms in exactly 12 g of carbon-12. (In 2011 the decision was taken to replace this definition, but the change has not yet, in 2018, been implemented.) The number of entities per mole is called Avogadro's constant, N_{A}; the currently accepted value is $6.022 \times 10^{23} \mathrm{~mol}^{-1}$ (note that N_{A} is a constant with units, not a pure number).
The molar mass of a substance, M (units: formally $\mathrm{kg} \mathrm{mol}^{-1}$ but commonly $\mathrm{g} \mathrm{mol}^{-1}$) is the mass per mole of its atoms, its molecules, or its formula units. The amount of substance of specified entities in a sample can readily be calculated from its mass, by noting that

$$
n=\frac{m}{M}
$$

Amount of substance

A note on good practice Be careful to distinguish atomic or molecular mass (the mass of a single atom or molecule; unit: kg) from molar mass (the mass per mole of atoms or molecules; units: $\mathrm{kg} \mathrm{mol}^{-1}$). Relative molecular masses of atoms and molecules, $M_{\mathrm{r}}=m / m_{\mathrm{u}}$, where m is the mass of the atom or molecule and m_{u} is the atomic mass constant (see inside front cover), are still widely called 'atomic weights' and 'molecular weights' even though they are dimensionless quantities and not weights ('weight' is the gravitational force exerted on an object).

A sample of matter may be subjected to a pressure, p (unit: pascal, $\mathrm{Pa} ; 1 \mathrm{~Pa}=1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$), which is defined as the force, F, it is subjected to, divided by the area, A, to which that force is applied. Although the pascal is the SI unit of pressure, it is also common to express pressure in bar $\left(1 \mathrm{bar}=10^{5} \mathrm{~Pa}\right)$ or atmospheres $(1 \mathrm{~atm}=101325 \mathrm{~Pa}$ exactly), both of which correspond to typical atmospheric pressure. Because many physical properties depend on the pressure acting on a sample, it is appropriate to select a certain value of the pressure to report their values. The standard pressure for reporting physical quantities is currently defined as $p^{\ominus}=1$ bar exactly.
To specify the state of a sample fully it is also necessary to give its temperature, T. The temperature is formally a property that determines in which direction energy will flow as heat when two samples are placed in contact through thermally conducting walls: energy flows from the sample with the higher temperature to the sample with the lower temperature. The symbol T is used to denote the thermodynamic temperature which is an absolute scale with $T=0$ as the lowest point. Temperatures above $T=0$ are then most commonly expressed by using the Kelvin scale, in which the gradations of temperature are expressed in kelvins (K). The Kelvin scale is currently defined by setting the triple point of water (the temperature at which ice, liquid water, and water vapour are in mutual equilibrium) at exactly 273.16 K (as for certain other units, a decision has been taken to revise this definition, but it has not yet, in 2018, been implemented). The freezing point of water (the melting point of ice) at 1 atm is then found experimentally to lie 0.01 K below the triple point, so the freezing point of water is 273.15 K .
Suppose a sample is divided into smaller samples. If a property of the original sample has a value that is equal to the sum of its values in all the smaller samples (as mass would), then it is said to be extensive. Mass and volume are extensive properties. If a property retains the same value as in the original sample for all the smaller samples (as temperature would), then it is said to be intensive. Temperature and pressure are intensive properties. Mass density, $\rho=m / V$, is also intensive because it would have the same value for all the smaller samples and the original sample. All molar properties, $X_{\mathrm{m}}=X / n$, are intensive, whereas X and n are both extensive.
$p=0$, regardless of the size of the units, such as bar or pascal). However, it is appropriate to write $0^{\circ} \mathrm{C}$ because the Celsius scale is not absolute.

1A. 2 Equations of state

Although in principle the state of a pure substance is specified by giving the values of n, V, p, and T, it has been established experimentally that it is sufficient to specify only three of these variables since doing so fixes the value of the fourth variable.

That is, it is an experimental fact that each substance is described by an equation of state, an equation that interrelates these four variables.

The general form of an equation of state is

$$
\begin{equation*}
p=f(T, V, n) \quad \text { General form of an equation of state } \tag{1A.2}
\end{equation*}
$$

This equation states that if the values of n, T, and V are known for a particular substance, then the pressure has a fixed value. Each substance is described by its own equation of state, but the explicit form of the equation is known in only a few special cases. One very important example is the equation of state of a 'perfect gas', which has the form $p=n R T / V$, where R is a constant independent of the identity of the gas.

The equation of state of a perfect gas was established by combining a series of empirical laws.

(a) The empirical basis

The following individual gas laws should be familiar:
Boyle's law: $\quad p V=$ constant, at constant n, T
Charles's law: $\quad V=$ constant $\times T$, at constant $n, p \quad$ (1A.3b)

$$
\begin{equation*}
p=\text { constant } \times T, \text { at constant } n, V \tag{1A.3c}
\end{equation*}
$$

Avogadro's principle:

$$
\begin{equation*}
V=\text { constant } \times n \text { at constant } p, T \tag{1A.3d}
\end{equation*}
$$

Boyle's and Charles's laws are examples of a limiting law, a law that is strictly true only in a certain limit, in this case $p \rightarrow 0$. For example, if it is found empirically that the volume of a substance fits an expression $V=a T+b p+c p^{2}$, then in the limit of $p \rightarrow 0, V=a T$. Many relations that are strictly true only at $p=0$ are nevertheless reasonably reliable at normal pressures ($p \approx 1$ bar) and are used throughout chemistry.

Figure 1A. 2 depicts the variation of the pressure of a sample of gas as the volume is changed. Each of the curves in the

Figure 1A. 2 The pressure-volume dependence of a fixed amount of perfect gas at different temperatures. Each curve is a hyperbola ($p V=$ constant) and is called an isotherm.

Figure 1A. 3 Straight lines are obtained when the pressure of a perfect gas is plotted against $1 / V$ at constant temperature. These lines extrapolate to zero pressure at $1 / V=0$.
graph corresponds to a single temperature and hence is called an isotherm. According to Boyle's law, the isotherms of gases are hyperbolas (a curve obtained by plotting y against x with $x y=$ constant, or $y=\operatorname{constant} / x$). An alternative depiction, a plot of pressure against $1 /$ volume, is shown in Fig. 1A.3. The linear variation of volume with temperature summarized by Charles's law is illustrated in Fig. 1A.4. The lines in this illustration are examples of isobars, or lines showing the variation of properties at constant pressure. Figure 1A. 5 illustrates the linear variation of pressure with temperature. The lines in this diagram are isochores, or lines showing the variation of properties at constant volume.

A note on good practice To test the validity of a relation between two quantities, it is best to plot them in such a way that they should give a straight line, because deviations from a straight line are much easier to detect than deviations from a curve. The development of expressions that, when plotted, give a straight line is a very important and common procedure in physical chemistry.

Figure 1A. 4 The variation of the volume of a fixed amount of a perfect gas with the temperature at constant pressure. Note that in each case the isobars extrapolate to zero volume at $T=0$, corresponding to $\theta=-273.15^{\circ} \mathrm{C}$.

Figure 1A. 5 The pressure of a perfect gas also varies linearly with the temperature at constant volume, and extrapolates to zero at $T=0\left(-273.15^{\circ} \mathrm{C}\right)$.

The empirical observations summarized by eqn 1A. 3 can be combined into a single expression:

$$
p V=\text { constant } \times n T
$$

This expression is consistent with Boyle's law ($p V=$ constant) when n and T are constant, with both forms of Charles's law $(p \propto T, V \propto T)$ when n and either V or p are held constant, and with Avogadro's principle $(V \propto n)$ when p and T are constant. The constant of proportionality, which is found experimentally to be the same for all gases, is denoted R and called the (molar) gas constant. The resulting expression

$$
p V=n R T
$$

Perfect gas law
(1A.4)
is the perfect gas law (or perfect gas equation of state). It is the approximate equation of state of any gas, and becomes increasingly exact as the pressure of the gas approaches zero. A gas that obeys eqn 1A. 4 exactly under all conditions is called a perfect gas (or ideal gas). A real gas, an actual gas, behaves more like a perfect gas the lower the pressure, and is described exactly by eqn 1 A .4 in the limit of $p \rightarrow 0$. The gas constant R can be determined by evaluating $R=p V / n T$ for a gas in the limit of zero pressure (to guarantee that it is behaving perfectly).

A note on good practice Despite 'ideal gas' being the more common term, 'perfect gas' is preferable. As explained in Topic 5B, in an 'ideal mixture' of A and B , the AA, BB, and $A B$ interactions are all the same but not necessarily zero. In a perfect gas, not only are the interactions all the same, they are also zero.

The surface in Fig. 1A. 6 is a plot of the pressure of a fixed amount of perfect gas against its volume and thermodynamic temperature as given by eqn 1A.4. The surface depicts the only possible states of a perfect gas: the gas cannot exist in states that do not correspond to points on the surface. The graphs in Figs. 1A. 2 and 1A. 4 correspond to the sections through the surface (Fig. 1A.7).

Figure 1A.6 A region of the p, V, T surface of a fixed amount of perfect gas. The points forming the surface represent the only states of the gas that can exist.

Figure 1A. 7 Sections through the surface shown in Fig. 1A. 6 at constant temperature give the isotherms shown in Fig. 1A.2. Sections at constant pressure give the isobars shown in Fig. 1A.4. Sections at constant volume give the isochores shown in Fig. 1A.5.

Example 1A. 1 Using the perfect gas law

In an industrial process, nitrogen gas is introduced into a vessel of constant volume at a pressure of 100 atm and a temperature of 300 K . The gas is then heated to 500 K . What pressure would the gas then exert, assuming that it behaved as a perfect gas?
Collect your thoughts The pressure is expected to be greater on account of the increase in temperature. The perfect gas law in the form $p V / n T=R$ implies that if the conditions are changed from one set of values to another, then because $p V / n T$ is equal to a constant, the two sets of values are related by the 'combined gas law'

$$
\begin{equation*}
\frac{p_{1} V_{1}}{n_{1} T_{1}}=\frac{p_{2} V_{2}}{n_{2} T_{2}} \quad \text { Combined gas law } \tag{1A.5}
\end{equation*}
$$

This expression is easily rearranged to give the unknown quantity (in this case p_{2}) in terms of the known. The known and unknown data are summarized as follows:

	\boldsymbol{n}	\boldsymbol{p}	\boldsymbol{V}	\boldsymbol{T}
Initial	Same	100 atm	Same	300 K
Final	Same	$?$	Same	500 K

The solution Cancellation of the volumes (because $V_{1}=V_{2}$) and amounts (because $n_{1}=n_{2}$) on each side of the combined gas law results in

$$
\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}
$$

which can be rearranged into

$$
p_{2}=\frac{T_{2}}{T_{1}} \times p_{1}
$$

Substitution of the data then gives

$$
p_{2}=\frac{500 \mathrm{~K}}{300 \mathrm{~K}} \times(100 \mathrm{~atm})=167 \mathrm{~atm}
$$

Self-test 1A. 1 What temperature would result in the same sample exerting a pressure of 300 atm ?

The perfect gas law is of the greatest importance in physical chemistry because it is used to derive a wide range of relations that are used throughout thermodynamics. However, it is also of considerable practical utility for calculating the properties of a gas under a variety of conditions. For instance, the molar volume, $V_{\mathrm{m}}=V / n$, of a perfect gas under the conditions called standard ambient temperature and pressure (SATP), which means 298.15 K and 1 bar (i.e. exactly $10^{5} \mathrm{~Pa}$), is easily calculated from $V_{\mathrm{m}}=R T / p$ to be $24.789 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$. An earlier definition, standard temperature and pressure (STP), was $0^{\circ} \mathrm{C}$ and 1 atm ; at STP, the molar volume of a perfect gas is $22.414 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$.

The molecular explanation of Boyle's law is that if a sample of gas is compressed to half its volume, then twice as many molecules strike the walls in a given period of time than before it was compressed. As a result, the average force exerted on the walls is doubled. Hence, when the volume is halved the pressure of the gas is doubled, and $p V$ is a constant. Boyle's law applies to all gases regardless of their chemical identity (provided the pressure is low) because at low pressures the average separation of molecules is so great that they exert no influence on one another and hence travel independently. The molecular explanation of Charles's law lies in the fact that raising the temperature of a gas increases the average speed of its molecules. The molecules collide with the walls more frequently and with greater impact. Therefore they exert a greater pressure on the walls of the container. For a quantitative account of these relations, see Topic 1B.

(b) Mixtures of gases

When dealing with gaseous mixtures, it is often necessary to know the contribution that each component makes to the total pressure of the sample. The partial pressure, p_{J}, of a gas J in a mixture (any gas, not just a perfect gas), is defined as

$$
\begin{array}{ll}
p_{\mathrm{J}}=x_{\mathrm{J}} p & \begin{array}{l}
\text { Partial pressure } \\
\text { [definition] }
\end{array} \tag{1A.6}
\end{array}
$$

where x_{J} is the mole fraction of the component J , the amount of J expressed as a fraction of the total amount of molecules, n, in the sample:

$$
x_{\mathrm{J}}=\frac{n_{\mathrm{J}}}{n} \quad n=n_{\mathrm{A}}+n_{\mathrm{B}}+\cdots \quad \begin{align*}
& \text { Mole fraction } \tag{1A.7}\\
& \text { [definition] }
\end{align*}
$$

When no J molecules are present, $x_{\mathrm{J}}=0$; when only J molecules are present, $x_{\mathrm{J}}=1$. It follows from the definition of x_{J} that, whatever the composition of the mixture, $x_{\mathrm{A}}+x_{\mathrm{B}}+\cdots=1$ and therefore that the sum of the partial pressures is equal to the total pressure:

$$
\begin{equation*}
p_{\mathrm{A}}+p_{\mathrm{B}}+\cdots=\left(x_{\mathrm{A}}+x_{\mathrm{B}}+\cdots\right) p=p \tag{1A.8}
\end{equation*}
$$

This relation is true for both real and perfect gases.
When all the gases are perfect, the partial pressure as defined in eqn 1A. 6 is also the pressure that each gas would exert if it occupied the same container alone at the same temperature. The latter is the original meaning of 'partial pressure'. That identification was the basis of the original formulation of Dalton's law:

The pressure exerted by a mixture of gases is the sum of the pressures that each one would exert if it occupied the container alone.

Dalton's law
This law is valid only for mixtures of perfect gases, so it is not used to define partial pressure. Partial pressure is defined by eqn 1A.6, which is valid for all gases.

Example 1A. 2 Calculating partial pressures

The mass percentage composition of dry air at sea level is approximately $\mathrm{N}_{2}: 75.5 ; \mathrm{O}_{2}: 23.2$; Ar: 1.3. What is the partial pressure of each component when the total pressure is 1.20 atm ?

Collect your thoughts Partial pressures are defined by eqn 1A.6. To use the equation, first calculate the mole fractions of the components, by using eqn 1A. 7 and the fact that the amount of atoms or molecules J of molar mass M_{J} in a sample of mass m_{J} is $n_{\mathrm{J}}=m_{\mathrm{J}} / M_{\mathrm{J}}$. The mole fractions are independent of the total mass of the sample, so choose the latter to be exactly 100 g (which makes the conversion from mass percentages very easy). Thus, the mass of N_{2} present is 75.5 per cent of 100 g , which is 75.5 g .

[^0]: $125 \mathrm{~K} \mathrm{~K}^{-1}$ and the entropy of the surroundings decreases by $125 / \mathrm{K}^{-1}$. Is the
 process spontaneous? 3A. 1 tb) Consider a process in which the entropy of a system increases by
 $105 \mathrm{~J} \mathrm{~K}^{1}$ and the entropy of the surroundings decreases by $95 \mathrm{~K} \mathrm{~K}^{1}$. Is the $105 \mathrm{IK}^{-1}$ and the entro
 process spontaneous?
 (SA.2.2) Consider a process in which 100kJ of energy is transferred reversibly and isothermally as heat to a large block of copper. Calculate the change in itropy of the block if he process takes place at $\left(\right.$ a) $0^{\circ} \mathrm{C}$, (b) $55^{\circ} \mathrm{C}$. 3.2.2) Consider a process in which 250 kj of energy is transterred revers atropy of the block if the process takes place at (a) $20^{\circ} \mathrm{C}$ ((b) $100^{\circ} \mathrm{C}$. E3A.3(2) Calculate the change in entropy of the gas when 15 g of carbon dioxide
 gas are allowed to expand isothermally from 1.0 dm ' t 3.0 dm at 300 K . ans are allowed toexpand isothermally from $1.0 \mathrm{dm}^{3}$ to $3.0 \mathrm{om}^{3}$ at 300 K . allowed to expand isothermally from $500 \mathrm{~cm}^{5}$ to 750 cm 'at 300 K . E3A.4(a) Calculate the change in the entropies of the system and the

 ## Problems

 SA. 1 A sample consisting of 1.00 mol of perfect gas molecules at $27^{\circ} \mathrm{C}$ is expanded sothermally from an initial pressure of 3.00 atm to a final pressure
 t.00 atm in two ways: $($ ()
 revessibl pressure of 1.00 atm. Evaluate $q, w, \Delta U, \Delta H, \Delta S, \Delta S_{m, m}$ and $\Delta S_{\text {sic }}$ in each chase.
 constant a t t.0.0 bar and the temperature is maintained at 300 K by a thermostat. The e istorn is relesesed so that the gas can expand. Calculute (a) the
 volume of the gas when the expansion is complete; (o) the work done when volume of the gas when the expansion is complete; (b) the work done whei
 the gas expands; (c) the heat absorbed by the system. Hence calculate ΔS_{w} P3A. 3 Consider a Carnot cycle in which the working substance is 0.10 mol of perfect gas molecules, the temperature ef the hot source is 373 K , and that of the cold sink is 273 K ; the initial volume of gas is $1.00 \mathrm{dm}^{3}$, which doubles
 over the course of the first soothermal stage. For the reversible adiabatic stages

 Stage 3 by considering the reversible adiabatic compression from the startiin
 point. (c) Hence, for each of the four stages of the cycle, calculate the heat

[^1]: transferred to or from the gas. (d) Explain why the work done is equal to the
 difiference between the heat extracted from the hot source and that deposited difference between the heat extracted from the hot source and that deposited
 in the cold sink. (e) Calculate the work done over the cycle and hence the
 efficiency η.(f) Confirm that your answer agrees with the effieiency efficiency η.(f) Confrm that your answer agrees with the e eficiency given by
 eqn $3 \mathrm{~A}, 9$ and that your values for the heat involved in the isothermal stages eqn 3 A .9 and that your values
 are in accord with eqn 3 A .6 .
 -3A.4. The Carnot cycle is usually represented on a pressure-volume diagram (Figi. 3 A. .). but ht he four stages can equally well berepresented on temperature-entropy diagram, in which the horizontal axis is entropy
 and the evertical axis is temperature; draw such a diagram. Assume that the

 isothermal stage. (a) By considering the entropy change of each stage, derive
 an expression for hte e erea enlosed by hhe cycle in the temperature-entropy
 diagram (b) Derive an expresion for the work do an expression nor the area encosed by the cycle in the temperature- entropy
 diagram (b) Derive an expression for the work done ove the cycle. (Hint The
 work done is the differenece between the heat extracted from the hos source Work done is the difiference between the heat extracted from the hot source
 and that dipposited in the cold sink; or use eqns 3 A. . and 3 A .9) (c) Comment and that deposited in the cold sink, or use eqns 3A.7.
 on the relation between your answers to (a) and (b).

